A spectral decomposition method for estimating the leaf nitrogen status of maize by UAV-based hyperspectral imaging

高光谱成像 天蓬 叶面积指数 偏最小二乘回归 数学 遥感 氮气 农学 植物 统计 生物 化学 有机化学 地质学
作者
Meiyan Shu,Zhu Jinyu,Yang XiaoHong,Xiaohe Gu,Baoguo Li,Yuntao Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108100-108100 被引量:22
标识
DOI:10.1016/j.compag.2023.108100
摘要

Leaf nitrogen status plays a crucial role in characterizing maize nutrient activity, which ultimately affects both the photosynthetic efficiency and yield formation of maize. For this reason, hyperspectral imaging technology based on unmanned aerial vehicle (UAV) has emerged as a popular tool for estimating crop phenotypic traits. Canopy structure and leaf nutrition together determine the crop canopy spectrum. Efficient separation of the spectral information sensitive to the leaf nitrogen status from the canopy spectrum is considered of utmost importance for improving the estimation accuracy of maize leaf nitrogen status. Along these lines, the main goal of this work was to develop a canopy spectral decomposition method to reduce the interference of other traits on leaf nitrogen concentration (LNC) and leaf nitrogen density (LND) estimation using UAV-based hyperspectral images. First, the weights of the leaf nitrogen status, aboveground biomass (AGB), and leaf area index (LAI) contributing to the canopy spectrum were calculated by using the entropy weight method. Then, the sensitive bands of LNC and LND before and after spectral decomposition were selected by implementing the successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) algorithm. Finally, the reflectance of all bands and sensitive bands was compared to estimate maize LNC and LND using partial least squares regression (PLSR), Gaussian process regression (GPR), support vector regression (SVR), and random forest regression (RFR). These models were systematically tested using independent samples. From the acquired results, it was demonstrated that the correlation coefficient (r) between LNC and each band increased after spectral decomposition compared to the correlation before spectral decomposition. The r between the band reflectance in the near infrared region and LNC or LND after spectral decomposition was significantly higher than that before spectral decomposition. In addition, the sensitive bands of maize leaf nitrogen status after spectral decomposition were around 470 nm, 538 nm, 638 nm, 682 nm, 710 nm, 734 nm, and 830 nm. Regardless of using the reflectance of all bands or sensitive bands, the four estimation models of LNC and LND after spectral decomposition performed better than those before spectral decomposition. The estimation models of LNC and LND constructed by CARS-SVR can successfully reproduce the estimation accuracies of the models constructed by using all-bands-SVR, with R2 on the testing set of 0.68. The results highlight that spectral decomposition is an effective method to significantly improve the estimation accuracy of maize leaf nitrogen status using UAV hyperspectral images, thus effectively reducing the interference of canopy structure traits (AGB and LAI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu发布了新的文献求助10
刚刚
刚刚
abcdefg发布了新的文献求助10
刚刚
刚刚
tzy完成签到,获得积分10
1秒前
1秒前
2秒前
路客完成签到,获得积分10
3秒前
3秒前
4秒前
junlin发布了新的文献求助10
4秒前
wwb发布了新的文献求助10
5秒前
科目三应助今何在采纳,获得10
5秒前
5秒前
积木123完成签到,获得积分10
6秒前
无语的无色完成签到,获得积分10
7秒前
9秒前
9秒前
JC完成签到,获得积分10
9秒前
9秒前
老肖发布了新的文献求助10
10秒前
NexusExplorer应助yuyu采纳,获得10
10秒前
幸福大白发布了新的文献求助10
11秒前
12秒前
12秒前
无语的弱发布了新的文献求助10
14秒前
15秒前
17秒前
852应助啦啦啦啦啦啦啦采纳,获得10
17秒前
Changlu发布了新的文献求助10
18秒前
斯文败类应助飘逸问兰采纳,获得10
18秒前
汉堡包应助团子采纳,获得10
19秒前
19秒前
21秒前
小刘不搞科研完成签到,获得积分10
21秒前
酷酷发布了新的文献求助10
21秒前
21秒前
努力的小K发布了新的文献求助10
22秒前
张建宇发布了新的文献求助10
22秒前
无花果应助大气的谷梦采纳,获得10
23秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714857
求助须知:如何正确求助?哪些是违规求助? 3262086
关于积分的说明 9922393
捐赠科研通 2975793
什么是DOI,文献DOI怎么找? 1631922
邀请新用户注册赠送积分活动 774204
科研通“疑难数据库(出版商)”最低求助积分说明 744762