Ensemble Learning Based Convolutional Neural Networks for Remaining Useful Life Prediction of Aircraft Engines

预言 卷积神经网络 计算机科学 涡扇发动机 人工智能 集成学习 深度学习 机器学习 超参数 人工神经网络 功能(生物学) 特征(语言学) 数据挖掘 工程类 语言学 哲学 进化生物学 生物 汽车工程
作者
Thambirajah Ravichandran,Bolun Cui,N. Sri Namachchivaya,Amar Kumar,Alka Srivatsava
出处
期刊:Proceedings of the Annual Conference of the Prognostics and Health Management Society [PHM Society]
卷期号:15 (1)
标识
DOI:10.36001/phmconf.2023.v15i1.3517
摘要

Remaining useful life (RUL) prediction is an essential task of Prognostics and Health Management (PHM) of aircraft engines performed utilizing the huge data collected from multiple sensors attached to them to ensure their safe operation. While many studies have been reported on RUL prediction for aircraft engines, only a few of them focus on ensemble learning of CNN models for RUL prediction. The success of ensemble learning which is a combination of several base models developed using either same or different machine learning or deep learning algorithms, critically depends on the diversity among the base models generated. This paper proposes a new data-driven approach for RUL prediction of aircraft engines using ensemble learning based convolution neural networks (CNN) by investigating various steps to generate more diverse base models. The main objectives and contributions of this paper are as follows: Explore various CNN model architectures for RUL prediction - After data preprocessing and exploratory data analysis, two different CNN approaches, namely 2D CNN and 1D CNN with multiple channels, are investigated employing time window approach for time-series input preparation for better feature extraction by CNN. Each approach is experimented with multiple architectures to achieve the best possible outcome. Investigate engine specific RUL target function - For RUL prediction of turbofan engines using the C-MAPSS dataset, typically two RUL target functions, namely linear and piecewise linear, are used to determine RUL target values. In the piecewise linear RUL target function approach, which yields better performance in the reported studies, the RUL target value is assigned based on a piecewise linear degradation model which assumes a constant (and maximum) RUL target value in the early phase before linearly degrading the RUL targets. In the literature, this maximum RUL target value was chosen same for all the engines by taking a value of 125 or 130 without providing proper rationale. In this study, we adopt an approach based on the widely known health index to determine an engine specific initial (and maximum) RUL target value that can be used with the piecewise linear degradation model to determine RUL target values. Investigate hyperparameter optimization of CNN models to generate diverse base models - For the purpose of developing a high performance ensemble CNN model for RUL prediction, hyperparameter optimization of CNN models is performed to optimally determine the network structure (such as # of filters, filter size, stride, padding, # of convolutional, pooling, and dense layers, activation functions etc.) as well as the hyperparameters that determine the network training process (such as optimization method, learning rate, momentum, batch size etc.). Investigate ensemble learning to select and combine diverse CNN models for RUL prediction – In order to develop model combiners, diverse CNN models as base learners are selected using multiple performance measures such as RMSE, score function, MAE, and R2 score, and employing the non-negative least squares method, random forest regression, and extreme learning machine (ELM) to train model combiners. Evaluate the above proposed approach using the C-MAPSS dataset - To show the effectiveness of the proposed approach, various evaluations for RUL prediction using the popular C-MAPSS dataset (including all the four sub-datasets denoted as FD001, FD002, FD003 and FD004) are carried out and the results will be compared against the state-of-the-art results on the same dataset. Major emphasis of this proposed approach is on the generation of diverse CNN base models by carrying out various steps as explained above, and it is expected the results of this proposed approach will contribute towards enhancing the RUL prediction performance especially on the sub-datasets FD002 and FD004 which are challenging for the existing state-of-the-art RUL prediction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的书兰完成签到,获得积分10
1秒前
Anan发布了新的文献求助10
1秒前
乐乐应助肉肉采纳,获得10
1秒前
爆米花应助Jeri采纳,获得10
2秒前
lili888完成签到,获得积分10
2秒前
松弛的小刀完成签到,获得积分10
2秒前
铅笔丶完成签到,获得积分10
3秒前
abrr完成签到,获得积分10
3秒前
小高同志发布了新的文献求助10
3秒前
Hilda007发布了新的文献求助30
3秒前
彭洪凯完成签到,获得积分10
3秒前
yyyzzz完成签到,获得积分10
3秒前
希望天下0贩的0应助XYF采纳,获得10
4秒前
赘婿应助wait采纳,获得10
5秒前
小南瓜完成签到,获得积分10
5秒前
han完成签到,获得积分10
6秒前
小南瓜发布了新的文献求助10
8秒前
9秒前
9秒前
orixero应助杨亚轩采纳,获得10
9秒前
andrele发布了新的文献求助10
10秒前
田様应助昌莆采纳,获得10
11秒前
领导范儿应助Mathletics采纳,获得10
11秒前
11秒前
何书易发布了新的文献求助20
11秒前
白昼星辰完成签到,获得积分10
12秒前
13秒前
沉默丹亦完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
李卓发布了新的文献求助10
15秒前
科研通AI6应助Ginkgo采纳,获得10
15秒前
mikasa发布了新的文献求助10
16秒前
华仔应助文静幼荷采纳,获得10
16秒前
16秒前
16秒前
脑洞疼应助肉肉采纳,获得10
17秒前
17秒前
赘婿应助木木采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529