生物
小头畸形
表观遗传学
大脑皮层
神经科学
DNA甲基化
转录组
皮质(解剖学)
中枢神经系统
基因表达
基因
遗传学
作者
Qing Yang,Qiang Cao,Yue Yu,Xianxin Lai,Jiahao Feng,Xinjie Li,Yi-Nan Jiang,Yazhou Sun,Zhong-Wei Zhou,Xin Li
标识
DOI:10.1016/j.jgg.2023.10.006
摘要
The cerebral cortex is a pivotal structure that is integral to advanced brain functions within the mammalian central nervous system. Patterns of DNA methylation and hydroxymethylation play important roles in regulating cerebral cortex development. However, it remains unclear whether abnormal cerebral cortex development, such as microcephaly, could rescale the epigenetic landscape, potentially contributing to dysregulated gene expression during brain development. In this study, we characterize and compare the DNA methylome/hydroxymethylome and transcriptome profiles of the cerebral cortex across several developmental stages in wild-type (WT) mice and Mcph1 knockout (Mcph1-del) mice with severe microcephaly. Intriguingly, we discover a global reduction of 5′- hydroxymethylcytosine (5hmC) level, primarily in TET1-binding regions, in Mcph1-del mice compared to WT mice during juvenile and adult stages. Notably, genes exhibiting diminished 5hmC levels and concurrently decreased expression are essential for neurodevelopment and brain functions. Additionally, genes displaying a delayed accumulation of 5hmC in Mcph1-del mice are significantly associated with the establishment and maintenance of the nervous system during the adult stage. These findings reveal that aberrant cerebral cortex development in early stages profoundly alters the epigenetic regulation program, which provides new insights into the molecular mechanisms underpinning diseases related to cerebral cortex development.
科研通智能强力驱动
Strongly Powered by AbleSci AI