Cross-domain Tongue Image Segmentation Based on Deep Adversarial Networks and Entropy Minimization

计算机科学 分割 人工智能 鉴别器 深度学习 图像分割 模式识别(心理学) 熵(时间箭头) 计算机视觉 机器学习 电信 物理 量子力学 探测器
作者
Liang Zhao,Shuai Zhang,Xiaomeng Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 116-128
标识
DOI:10.1007/978-3-031-46317-4_11
摘要

The semantic segmentation of tongue image is a key problem in the development of TCM (Traditional Chinese Medicine) modernization, and there are a lot of research dedicated to the development of tongue segmentation. Although the performance improvement in tongue segmentation with the evolution of deep learning, there are major challenges in generalizing it to the diverse testing domain. As we known, the worse the consistency of cross-domain data distribution between source and target domain is, the lower the performance of model in test domain gets. Existing semantic segmentation methods based on supervised learning are difficult to deal with such problems when it is impossible to re-label the tongue image with poor generalization performance in the target domain. To address this problem, we design a adversarial training framework with regularizing entropy on target domain, aiming to enforce high certainty of model’s prediction on target domain during the trend of domain alignment. Specifically, we pre-trained the tongue image segmentation model with deep supervised method on the source domain. In addition to segmentation task, the segmentation model need to regularize entropy of output on target domain and maximally confuse the discriminator. The discriminator tries to distinguish whether the output of segmentation model from the source domain or the target domain. In this study, two datasets is constructed, and the five-fold cross-validation experiment is performed on it. Experimental results show that the tongue image segmentation performance in the open environment was improved by 21.5% mIOU (59.2% → 80.7%) after domain adaptation. As opposed to the pseudo label learning with different thresholds(0.6, 0.9), the mIOU of proposed method increased by 17%, 16.1%. Moreover, as opposed to MinEnt, the mIOU increased by 6%. The tongue images cross-domain segmentation method proposed in this paper significantly improves the segmentation accuracy in the unlabeled target domain by reducing the influence of the cross-domain discrepancy and enhancing the certainty of model output in target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyx7735完成签到,获得积分20
1秒前
Ry发布了新的文献求助10
2秒前
future完成签到 ,获得积分10
3秒前
theonePTC发布了新的文献求助10
4秒前
4秒前
内向耷发布了新的文献求助30
4秒前
5秒前
小蘑菇应助DW采纳,获得10
6秒前
你可真下饭完成签到,获得积分10
6秒前
7秒前
领导范儿应助hyx7735采纳,获得10
8秒前
8秒前
拉宝了发布了新的文献求助10
9秒前
9秒前
10秒前
Nature完成签到,获得积分10
10秒前
zzzzzz发布了新的文献求助30
11秒前
充电宝应助makoto1984采纳,获得10
11秒前
可ke完成签到 ,获得积分10
11秒前
科研通AI2S应助ne采纳,获得10
11秒前
花Cheung完成签到,获得积分10
12秒前
12秒前
liyuxuan发布了新的文献求助10
13秒前
黎黎发布了新的文献求助10
13秒前
典雅不凡发布了新的文献求助20
13秒前
oncoma完成签到 ,获得积分10
14秒前
呆萌背包发布了新的文献求助10
15秒前
默默发布了新的文献求助10
15秒前
15秒前
Emma发布了新的文献求助10
16秒前
shinysparrow应助chen采纳,获得100
16秒前
李健应助超级白昼采纳,获得30
17秒前
郝宝真发布了新的文献求助10
19秒前
666完成签到,获得积分10
19秒前
香蕉觅云应助Ry采纳,获得10
19秒前
惜曦发布了新的文献求助10
19秒前
彭于晏应助科研通管家采纳,获得10
22秒前
Murphy应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175