Cross-domain Tongue Image Segmentation Based on Deep Adversarial Networks and Entropy Minimization

计算机科学 分割 人工智能 鉴别器 深度学习 图像分割 模式识别(心理学) 熵(时间箭头) 计算机视觉 机器学习 电信 物理 量子力学 探测器
作者
Liang Zhao,Shuai Zhang,Xiaomeng Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 116-128
标识
DOI:10.1007/978-3-031-46317-4_11
摘要

The semantic segmentation of tongue image is a key problem in the development of TCM (Traditional Chinese Medicine) modernization, and there are a lot of research dedicated to the development of tongue segmentation. Although the performance improvement in tongue segmentation with the evolution of deep learning, there are major challenges in generalizing it to the diverse testing domain. As we known, the worse the consistency of cross-domain data distribution between source and target domain is, the lower the performance of model in test domain gets. Existing semantic segmentation methods based on supervised learning are difficult to deal with such problems when it is impossible to re-label the tongue image with poor generalization performance in the target domain. To address this problem, we design a adversarial training framework with regularizing entropy on target domain, aiming to enforce high certainty of model’s prediction on target domain during the trend of domain alignment. Specifically, we pre-trained the tongue image segmentation model with deep supervised method on the source domain. In addition to segmentation task, the segmentation model need to regularize entropy of output on target domain and maximally confuse the discriminator. The discriminator tries to distinguish whether the output of segmentation model from the source domain or the target domain. In this study, two datasets is constructed, and the five-fold cross-validation experiment is performed on it. Experimental results show that the tongue image segmentation performance in the open environment was improved by 21.5% mIOU (59.2% → 80.7%) after domain adaptation. As opposed to the pseudo label learning with different thresholds(0.6, 0.9), the mIOU of proposed method increased by 17%, 16.1%. Moreover, as opposed to MinEnt, the mIOU increased by 6%. The tongue images cross-domain segmentation method proposed in this paper significantly improves the segmentation accuracy in the unlabeled target domain by reducing the influence of the cross-domain discrepancy and enhancing the certainty of model output in target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴的身影完成签到,获得积分10
刚刚
茕凡桃七完成签到,获得积分10
刚刚
欧阳静芙完成签到,获得积分10
1秒前
石珊的豆豆完成签到,获得积分10
1秒前
daidai完成签到,获得积分10
2秒前
江恋完成签到,获得积分10
2秒前
kk完成签到,获得积分10
3秒前
everglow完成签到,获得积分20
3秒前
ayuelei发布了新的文献求助10
4秒前
小明应助Mida采纳,获得10
4秒前
幸福大白发布了新的文献求助10
5秒前
6秒前
望远山完成签到,获得积分10
6秒前
7秒前
好心完成签到,获得积分10
7秒前
伶俐的凡之完成签到,获得积分10
7秒前
火星上含芙完成签到 ,获得积分10
9秒前
Ocant发布了新的文献求助10
12秒前
翁雁丝完成签到 ,获得积分10
12秒前
NexusExplorer应助1111111采纳,获得10
13秒前
ry完成签到,获得积分10
13秒前
沉静白卉完成签到,获得积分10
13秒前
14秒前
14秒前
shelly完成签到,获得积分10
14秒前
想去山上当猴完成签到,获得积分10
14秒前
14秒前
KleinFC应助外向的依风采纳,获得10
16秒前
今天吃三碗粉完成签到,获得积分10
17秒前
情怀应助奋斗冬萱采纳,获得10
17秒前
Herisland完成签到 ,获得积分10
18秒前
轻松的GIGI发布了新的文献求助10
20秒前
CodeCraft应助Ta沓如流星采纳,获得10
20秒前
20秒前
小二郎应助捏捏捏采纳,获得10
20秒前
安静的妖丽完成签到,获得积分10
21秒前
22秒前
lili完成签到 ,获得积分20
22秒前
严惜完成签到,获得积分10
23秒前
Tianling完成签到,获得积分0
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4543640
求助须知:如何正确求助?哪些是违规求助? 3976144
关于积分的说明 12312979
捐赠科研通 3643982
什么是DOI,文献DOI怎么找? 2006806
邀请新用户注册赠送积分活动 1042101
科研通“疑难数据库(出版商)”最低求助积分说明 931263