Cross-domain Tongue Image Segmentation Based on Deep Adversarial Networks and Entropy Minimization

计算机科学 分割 人工智能 鉴别器 深度学习 图像分割 模式识别(心理学) 熵(时间箭头) 计算机视觉 机器学习 电信 物理 量子力学 探测器
作者
Liang Zhao,Shuai Zhang,Xiaomeng Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 116-128
标识
DOI:10.1007/978-3-031-46317-4_11
摘要

The semantic segmentation of tongue image is a key problem in the development of TCM (Traditional Chinese Medicine) modernization, and there are a lot of research dedicated to the development of tongue segmentation. Although the performance improvement in tongue segmentation with the evolution of deep learning, there are major challenges in generalizing it to the diverse testing domain. As we known, the worse the consistency of cross-domain data distribution between source and target domain is, the lower the performance of model in test domain gets. Existing semantic segmentation methods based on supervised learning are difficult to deal with such problems when it is impossible to re-label the tongue image with poor generalization performance in the target domain. To address this problem, we design a adversarial training framework with regularizing entropy on target domain, aiming to enforce high certainty of model’s prediction on target domain during the trend of domain alignment. Specifically, we pre-trained the tongue image segmentation model with deep supervised method on the source domain. In addition to segmentation task, the segmentation model need to regularize entropy of output on target domain and maximally confuse the discriminator. The discriminator tries to distinguish whether the output of segmentation model from the source domain or the target domain. In this study, two datasets is constructed, and the five-fold cross-validation experiment is performed on it. Experimental results show that the tongue image segmentation performance in the open environment was improved by 21.5% mIOU (59.2% → 80.7%) after domain adaptation. As opposed to the pseudo label learning with different thresholds(0.6, 0.9), the mIOU of proposed method increased by 17%, 16.1%. Moreover, as opposed to MinEnt, the mIOU increased by 6%. The tongue images cross-domain segmentation method proposed in this paper significantly improves the segmentation accuracy in the unlabeled target domain by reducing the influence of the cross-domain discrepancy and enhancing the certainty of model output in target domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助成就半双采纳,获得10
1秒前
wooyn发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
坚强的缘分完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
lizishu应助科研通管家采纳,获得10
7秒前
zzy完成签到,获得积分10
9秒前
LLSSLL发布了新的文献求助10
10秒前
时尚嚓茶完成签到,获得积分10
15秒前
ycy完成签到,获得积分10
20秒前
不知道完成签到 ,获得积分10
23秒前
24秒前
眼睛大的黑猫完成签到,获得积分10
25秒前
chloe发布了新的文献求助10
30秒前
33秒前
不乱不破完成签到 ,获得积分10
35秒前
刘立凡完成签到,获得积分10
38秒前
搜集达人应助yw采纳,获得10
39秒前
39秒前
41秒前
且行丶且努力完成签到,获得积分10
43秒前
linliqing完成签到,获得积分10
43秒前
我是中国人完成签到,获得积分10
44秒前
傲娇的月亮完成签到,获得积分20
44秒前
LLSSLL完成签到,获得积分10
44秒前
谷雨发布了新的文献求助10
45秒前
wooyn完成签到,获得积分20
50秒前
50秒前
敏感的秋凌完成签到 ,获得积分10
51秒前
chloe完成签到,获得积分10
51秒前
不想做实验完成签到,获得积分10
54秒前
yw发布了新的文献求助10
55秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852198
求助须知:如何正确求助?哪些是违规求助? 6276834
关于积分的说明 15627779
捐赠科研通 4968069
什么是DOI,文献DOI怎么找? 2678890
邀请新用户注册赠送积分活动 1623161
关于科研通互助平台的介绍 1579518