Cross-domain Tongue Image Segmentation Based on Deep Adversarial Networks and Entropy Minimization

计算机科学 分割 人工智能 鉴别器 深度学习 图像分割 模式识别(心理学) 熵(时间箭头) 计算机视觉 机器学习 电信 物理 量子力学 探测器
作者
Liang Zhao,Shuai Zhang,Xiaomeng Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 116-128
标识
DOI:10.1007/978-3-031-46317-4_11
摘要

The semantic segmentation of tongue image is a key problem in the development of TCM (Traditional Chinese Medicine) modernization, and there are a lot of research dedicated to the development of tongue segmentation. Although the performance improvement in tongue segmentation with the evolution of deep learning, there are major challenges in generalizing it to the diverse testing domain. As we known, the worse the consistency of cross-domain data distribution between source and target domain is, the lower the performance of model in test domain gets. Existing semantic segmentation methods based on supervised learning are difficult to deal with such problems when it is impossible to re-label the tongue image with poor generalization performance in the target domain. To address this problem, we design a adversarial training framework with regularizing entropy on target domain, aiming to enforce high certainty of model’s prediction on target domain during the trend of domain alignment. Specifically, we pre-trained the tongue image segmentation model with deep supervised method on the source domain. In addition to segmentation task, the segmentation model need to regularize entropy of output on target domain and maximally confuse the discriminator. The discriminator tries to distinguish whether the output of segmentation model from the source domain or the target domain. In this study, two datasets is constructed, and the five-fold cross-validation experiment is performed on it. Experimental results show that the tongue image segmentation performance in the open environment was improved by 21.5% mIOU (59.2% → 80.7%) after domain adaptation. As opposed to the pseudo label learning with different thresholds(0.6, 0.9), the mIOU of proposed method increased by 17%, 16.1%. Moreover, as opposed to MinEnt, the mIOU increased by 6%. The tongue images cross-domain segmentation method proposed in this paper significantly improves the segmentation accuracy in the unlabeled target domain by reducing the influence of the cross-domain discrepancy and enhancing the certainty of model output in target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助20
刚刚
陈花蕾发布了新的文献求助10
1秒前
ZY完成签到 ,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助150
4秒前
ZY关注了科研通微信公众号
5秒前
谦让寒云完成签到 ,获得积分10
6秒前
liu发布了新的文献求助10
6秒前
Ava应助chcmuer采纳,获得10
7秒前
feizhuliu发布了新的文献求助10
7秒前
8秒前
万能图书馆应助Fan_采纳,获得10
8秒前
10秒前
Zz完成签到 ,获得积分10
11秒前
yongtao发布了新的文献求助10
11秒前
不爱科研完成签到 ,获得积分10
13秒前
13秒前
elastin发布了新的文献求助10
15秒前
热心市民小红花应助liu采纳,获得10
16秒前
梅赛德斯完成签到,获得积分10
17秒前
17秒前
mushanes发布了新的文献求助10
18秒前
18秒前
好丑啊完成签到,获得积分10
19秒前
t通驳回了思源应助
19秒前
20秒前
灿烂完成签到,获得积分10
20秒前
竹马子完成签到,获得积分10
20秒前
谦让幻枫完成签到,获得积分20
20秒前
22秒前
23秒前
moji发布了新的文献求助10
23秒前
裴敏发布了新的文献求助10
23秒前
YANA完成签到,获得积分10
24秒前
25秒前
CipherSage应助正直凌文采纳,获得10
25秒前
谦让幻枫发布了新的文献求助10
25秒前
26秒前
enshun发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651