Multi-modal emotion analysis has become an active research field . However, in real-world scenarios, it is often necessary to analyze and recognize emotion data with noise. Integrating information from different modalities effectively to enhance the overall robustness of the model remains a challenge. To address this, we propose an improved approach that leverages modality latent information to enhance cross-modal interaction and improve the robustness of multi-modal emotion classification models. Specifically, we apply a multi-period-based preprocessing technique to the audio modality data. Additionally, we introduce a random modality noise injection strategy to augment the training data and enhance generalization capabilities. Finally, we employ a composite fusion method to integrate information features from different modalities, effectively promoting cross-modal information interaction and enhancing the overall robustness of the model. We evaluate our proposed method in the MER-NOISE sub-challenge of MER2023. Experimental results demonstrate that our improved multi-modal emotion classification model achieves a weighted F1 score of 69.66% and an MSE score of 0.92 on the MER-NOISE test set, with an overall score of 46.69%, representing a 5.69% improvement over the baseline. These results prove the effectiveness of our proposed approach in further enhancing the robustness of the model.