亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early prediction of battery lifetime based on graphical features and convolutional neural networks

卷积神经网络 预言 模式识别(心理学) 计算机科学 特征(语言学) 人工智能 特征提取 电池(电) 数据挖掘 哲学 语言学 功率(物理) 物理 量子力学
作者
Ning He,Qiqi Wang,LU Zhen-feng,Yike Chai,Fangfang Yang
出处
期刊:Applied Energy [Elsevier]
卷期号:353: 122048-122048 被引量:48
标识
DOI:10.1016/j.apenergy.2023.122048
摘要

Accurate lifetime prediction of lithium-ion batteries in the early cycles is critical for timely failure warning and effective quality grading. Convolutional neural network (CNN), with excellent performance in feature extraction, has gained increasingly attentions in battery prognostics. However, since degradation test normally takes years to complete, employing end-to-end CNNs directly for battery lifetime prediction is impractical due to the limited number of available training samples and the scarcity of features in the early cycles. Instead of directly feeding the raw data, in this work, we propose to use graphical features for early lifetime prediction. Three feature curves, including capacity-voltage curve, incremental capacity curve, and capacity difference curve are used to construct graphical features. Specifically, the incremental capacity curve and capacity difference curve are derived from capacity-voltage curve, aiming to extract more information from both intra-cycle and inter-cycle perspectives. The evolution patterns of these feature curves over the initial 100 cycles show evident correlations with battery lifetime, and are termed as the graphical features. The three graphical features, after some proper transformation, are stacked into a three-channel image before feeding to the CNN model. Five classical CNNs, with different structures and key parameters, are investigated for battery lifetime prediction. Comparative experiments are conducted to study the influence of different feature combinations, voltage segments, and discharge cycles on the prediction performance. Experimental results demonstrate that simple CNNs with only a few convolutional layers can achieve satisfying prediction results. Additionally, networks with rectified linear unit are shown to outperform those with other activation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈应助AliEmbark采纳,获得10
38秒前
猪仔5号发布了新的文献求助10
43秒前
AliEmbark完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
sjyu1985完成签到 ,获得积分10
2分钟前
hua完成签到,获得积分10
2分钟前
hua发布了新的文献求助10
3分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
猪仔5号发布了新的文献求助10
5分钟前
乐正怡完成签到 ,获得积分0
5分钟前
酷波er应助忐忑的黄豆采纳,获得10
5分钟前
小石头完成签到 ,获得积分10
5分钟前
Yuki完成签到 ,获得积分10
5分钟前
吴静完成签到 ,获得积分10
6分钟前
Percy完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
猪仔5号发布了新的文献求助10
7分钟前
7分钟前
俊逸的若魔完成签到 ,获得积分10
7分钟前
U87完成签到,获得积分10
7分钟前
9分钟前
小蘑菇应助郡邑采纳,获得10
9分钟前
zsmj23完成签到 ,获得积分0
10分钟前
科研通AI2S应助谨慎建辉采纳,获得10
10分钟前
这学真难读下去完成签到,获得积分10
10分钟前
yanzilin完成签到 ,获得积分10
10分钟前
猪仔5号发布了新的文献求助10
11分钟前
谨慎建辉完成签到,获得积分10
11分钟前
猪仔5号发布了新的文献求助10
11分钟前
科研通AI2S应助谨慎建辉采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302944
求助须知:如何正确求助?哪些是违规求助? 4449985
关于积分的说明 13848855
捐赠科研通 4336308
什么是DOI,文献DOI怎么找? 2380906
邀请新用户注册赠送积分活动 1375846
关于科研通互助平台的介绍 1342239