Early prediction of battery lifetime based on graphical features and convolutional neural networks

卷积神经网络 预言 模式识别(心理学) 计算机科学 特征(语言学) 人工智能 特征提取 电池(电) 数据挖掘 哲学 语言学 功率(物理) 物理 量子力学
作者
Ning He,Qiqi Wang,LU Zhen-feng,Yike Chai,Fangfang Yang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:353: 122048-122048 被引量:38
标识
DOI:10.1016/j.apenergy.2023.122048
摘要

Accurate lifetime prediction of lithium-ion batteries in the early cycles is critical for timely failure warning and effective quality grading. Convolutional neural network (CNN), with excellent performance in feature extraction, has gained increasingly attentions in battery prognostics. However, since degradation test normally takes years to complete, employing end-to-end CNNs directly for battery lifetime prediction is impractical due to the limited number of available training samples and the scarcity of features in the early cycles. Instead of directly feeding the raw data, in this work, we propose to use graphical features for early lifetime prediction. Three feature curves, including capacity-voltage curve, incremental capacity curve, and capacity difference curve are used to construct graphical features. Specifically, the incremental capacity curve and capacity difference curve are derived from capacity-voltage curve, aiming to extract more information from both intra-cycle and inter-cycle perspectives. The evolution patterns of these feature curves over the initial 100 cycles show evident correlations with battery lifetime, and are termed as the graphical features. The three graphical features, after some proper transformation, are stacked into a three-channel image before feeding to the CNN model. Five classical CNNs, with different structures and key parameters, are investigated for battery lifetime prediction. Comparative experiments are conducted to study the influence of different feature combinations, voltage segments, and discharge cycles on the prediction performance. Experimental results demonstrate that simple CNNs with only a few convolutional layers can achieve satisfying prediction results. Additionally, networks with rectified linear unit are shown to outperform those with other activation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
李健应助Birdy采纳,获得10
1秒前
oooo完成签到,获得积分10
1秒前
cwm发布了新的文献求助10
1秒前
Kanas完成签到,获得积分10
1秒前
2秒前
rigou667完成签到,获得积分10
3秒前
幽默阑悦完成签到,获得积分10
3秒前
HangSun发布了新的文献求助10
3秒前
4秒前
夜斗完成签到,获得积分10
4秒前
4秒前
科目三应助贵金属采纳,获得10
4秒前
星期天发布了新的文献求助10
5秒前
5秒前
5秒前
gbx完成签到,获得积分10
5秒前
情怀应助乌龙茶ICE采纳,获得10
5秒前
5秒前
5秒前
科研通AI6应助冷静夜蕾采纳,获得10
6秒前
吕曼完成签到,获得积分10
6秒前
温悦发布了新的文献求助10
7秒前
zym完成签到,获得积分10
7秒前
7秒前
武科完成签到,获得积分10
7秒前
7秒前
lipltsit发布了新的文献求助10
7秒前
9秒前
凉风送信发布了新的文献求助10
10秒前
10秒前
KYS666发布了新的文献求助10
10秒前
10秒前
Birdy发布了新的文献求助10
10秒前
Hello应助城南采纳,获得10
11秒前
LouisYRJ完成签到,获得积分10
11秒前
WHaha发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558