GWOKM: A novel hybrid optimization algorithm for geochemical anomaly detection based on Grey wolf optimizer and K-means clustering

聚类分析 质心 矽卡岩 计算 数据挖掘 地质学 计算机科学 模式识别(心理学) 算法 人工智能 古生物学 石英 流体包裹体
作者
Mehrdad Daviran,Reza Ghezelbash,Abbas Maghsoudi
出处
期刊:Chemie der Erde [Elsevier]
卷期号:84 (1): 126036-126036 被引量:2
标识
DOI:10.1016/j.chemer.2023.126036
摘要

Identifying the geochemical signatures of valuable mineral deposits using regional geochemical data from stream sediments is a challenging task due to the intricate characteristics of geological formations. Our team is currently investigating the potential of unsupervised clustering analysis (CA) and hybridization with the grey wolf optimizer (GWO) in developing multi-element geochemical models using stream sediment data. To cluster the geochemical data and uncover any unusual patterns, we opted to use the K-means (KM) algorithm due to its straightforward implementation, fast computation speed, and capacity to handle the large datasets. Despite its benefits, the KM method also has notable limitations, such as the random selection of cluster centroids. This can result in higher systematic uncertainty in unsupervised geochemical modeling and longer computation times. To mitigate this concern, we have introduced a new hybrid approach, grey wolf optimizer with K-means so-called the GWOKM algorithm to enhance the delineation of multi-elemental patterns in stream sediment geochemical data. This method incorporates the grey wolf optimization algorithm with KM to optimize the identification of both anomalies and backgrounds using factor analysis and sample catchment basin modeling techniques. This approach was utilized to detect anomalous multi-elemental geochemical patterns indicative of porphyry and skarn copper deposits in the Baft area, Kerman belt, Iran. Upon comparison of the geochemical models derived from KM and GWOKM clustering methods, the latter outperformed the former, as evidenced by its higher prediction rate. The outcomes affirm the efficacy of unsupervised KM clustering analysis (CA) as a means of breaking down geochemical anomaly-background populations. Moreover, the integration of clustering methods with optimization algorithms has proven to be successful for enhancing the credibility of mineralized areas, which could be advantageous in future exploration phases. Based on the results, the GWOKM approach generates more reliable and efficient geochemical anomaly targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月轮回发布了新的文献求助10
刚刚
sakiecon完成签到,获得积分10
刚刚
omo完成签到,获得积分10
刚刚
调研昵称发布了新的文献求助10
1秒前
1秒前
华仔应助留胡子的青柏采纳,获得10
1秒前
1秒前
建丰完成签到,获得积分10
2秒前
2秒前
乐乐应助宗笑晴采纳,获得10
2秒前
拼搏太英完成签到,获得积分10
2秒前
3秒前
susu发布了新的文献求助200
3秒前
5秒前
loveyouxkkt应助韦老虎采纳,获得30
5秒前
小蘑菇应助含糊采纳,获得10
6秒前
深情安青应助狂野觅云采纳,获得10
6秒前
鉴定为寄发布了新的文献求助30
7秒前
夜白举报无奈的浩宇求助涉嫌违规
7秒前
7秒前
8秒前
跳跃尔容发布了新的文献求助10
8秒前
青山发布了新的文献求助26
8秒前
8秒前
Agernon应助韦老虎采纳,获得10
9秒前
沉默沛岚发布了新的文献求助30
9秒前
9秒前
程程发布了新的文献求助10
9秒前
晨安发布了新的文献求助10
10秒前
10秒前
橙子完成签到,获得积分10
10秒前
10秒前
DrYang发布了新的文献求助10
10秒前
11秒前
哈哈大笑完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
特兰克斯发布了新的文献求助10
13秒前
危机的尔蝶完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762