GWOKM: A novel hybrid optimization algorithm for geochemical anomaly detection based on Grey wolf optimizer and K-means clustering

聚类分析 质心 矽卡岩 计算 数据挖掘 地质学 计算机科学 模式识别(心理学) 算法 人工智能 古生物学 流体包裹体 石英
作者
Mehrdad Daviran,Reza Ghezelbash,Abbas Maghsoudi
出处
期刊:Chemie der Erde [Elsevier BV]
卷期号:84 (1): 126036-126036 被引量:14
标识
DOI:10.1016/j.chemer.2023.126036
摘要

Identifying the geochemical signatures of valuable mineral deposits using regional geochemical data from stream sediments is a challenging task due to the intricate characteristics of geological formations. Our team is currently investigating the potential of unsupervised clustering analysis (CA) and hybridization with the grey wolf optimizer (GWO) in developing multi-element geochemical models using stream sediment data. To cluster the geochemical data and uncover any unusual patterns, we opted to use the K-means (KM) algorithm due to its straightforward implementation, fast computation speed, and capacity to handle the large datasets. Despite its benefits, the KM method also has notable limitations, such as the random selection of cluster centroids. This can result in higher systematic uncertainty in unsupervised geochemical modeling and longer computation times. To mitigate this concern, we have introduced a new hybrid approach, grey wolf optimizer with K-means so-called the GWOKM algorithm to enhance the delineation of multi-elemental patterns in stream sediment geochemical data. This method incorporates the grey wolf optimization algorithm with KM to optimize the identification of both anomalies and backgrounds using factor analysis and sample catchment basin modeling techniques. This approach was utilized to detect anomalous multi-elemental geochemical patterns indicative of porphyry and skarn copper deposits in the Baft area, Kerman belt, Iran. Upon comparison of the geochemical models derived from KM and GWOKM clustering methods, the latter outperformed the former, as evidenced by its higher prediction rate. The outcomes affirm the efficacy of unsupervised KM clustering analysis (CA) as a means of breaking down geochemical anomaly-background populations. Moreover, the integration of clustering methods with optimization algorithms has proven to be successful for enhancing the credibility of mineralized areas, which could be advantageous in future exploration phases. Based on the results, the GWOKM approach generates more reliable and efficient geochemical anomaly targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JaneChen发布了新的文献求助10
1秒前
1秒前
bofu发布了新的文献求助10
1秒前
付榆峰发布了新的文献求助10
1秒前
lalala发布了新的文献求助10
2秒前
di关闭了di文献求助
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
water应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
water应助科研通管家采纳,获得10
3秒前
ll应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得30
3秒前
5秒前
jyyg发布了新的文献求助10
5秒前
5秒前
6秒前
小DRA完成签到,获得积分10
6秒前
7秒前
7秒前
chen发布了新的文献求助10
7秒前
bofu发布了新的文献求助10
7秒前
di关闭了di文献求助
7秒前
ZZ发布了新的文献求助10
8秒前
等待的秋双完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
博修发布了新的文献求助10
10秒前
wanci应助达助采纳,获得10
11秒前
小马甲应助水色采纳,获得10
11秒前
小DRA发布了新的文献求助10
11秒前
di关闭了di文献求助
13秒前
zzznznnn发布了新的文献求助10
13秒前
302naiba完成签到 ,获得积分10
13秒前
13秒前
朝花夕拾发布了新的文献求助10
13秒前
dinmei完成签到,获得积分10
14秒前
dlfg完成签到,获得积分10
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163