GWOKM: A novel hybrid optimization algorithm for geochemical anomaly detection based on Grey wolf optimizer and K-means clustering

聚类分析 质心 矽卡岩 计算 数据挖掘 地质学 计算机科学 模式识别(心理学) 算法 人工智能 古生物学 流体包裹体 石英
作者
Mehrdad Daviran,Reza Ghezelbash,Abbas Maghsoudi
出处
期刊:Chemie der Erde [Elsevier]
卷期号:84 (1): 126036-126036 被引量:2
标识
DOI:10.1016/j.chemer.2023.126036
摘要

Identifying the geochemical signatures of valuable mineral deposits using regional geochemical data from stream sediments is a challenging task due to the intricate characteristics of geological formations. Our team is currently investigating the potential of unsupervised clustering analysis (CA) and hybridization with the grey wolf optimizer (GWO) in developing multi-element geochemical models using stream sediment data. To cluster the geochemical data and uncover any unusual patterns, we opted to use the K-means (KM) algorithm due to its straightforward implementation, fast computation speed, and capacity to handle the large datasets. Despite its benefits, the KM method also has notable limitations, such as the random selection of cluster centroids. This can result in higher systematic uncertainty in unsupervised geochemical modeling and longer computation times. To mitigate this concern, we have introduced a new hybrid approach, grey wolf optimizer with K-means so-called the GWOKM algorithm to enhance the delineation of multi-elemental patterns in stream sediment geochemical data. This method incorporates the grey wolf optimization algorithm with KM to optimize the identification of both anomalies and backgrounds using factor analysis and sample catchment basin modeling techniques. This approach was utilized to detect anomalous multi-elemental geochemical patterns indicative of porphyry and skarn copper deposits in the Baft area, Kerman belt, Iran. Upon comparison of the geochemical models derived from KM and GWOKM clustering methods, the latter outperformed the former, as evidenced by its higher prediction rate. The outcomes affirm the efficacy of unsupervised KM clustering analysis (CA) as a means of breaking down geochemical anomaly-background populations. Moreover, the integration of clustering methods with optimization algorithms has proven to be successful for enhancing the credibility of mineralized areas, which could be advantageous in future exploration phases. Based on the results, the GWOKM approach generates more reliable and efficient geochemical anomaly targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的书本完成签到,获得积分10
1秒前
1秒前
小杨完成签到,获得积分10
1秒前
lingling发布了新的文献求助10
1秒前
怡然白竹发布了新的文献求助10
2秒前
成就小懒虫完成签到,获得积分10
2秒前
lilyz615完成签到,获得积分10
2秒前
大模型应助2323采纳,获得10
3秒前
C2完成签到,获得积分10
3秒前
4秒前
影像大侠完成签到,获得积分10
4秒前
4秒前
努力努力多活一天是一天完成签到,获得积分10
4秒前
郑郑郑幸运完成签到 ,获得积分10
5秒前
阿星捌完成签到 ,获得积分10
6秒前
FYJY完成签到,获得积分10
6秒前
科目三应助无奈的萝采纳,获得10
6秒前
酷波er应助shor0414采纳,获得10
7秒前
酷波er应助Wri采纳,获得10
7秒前
满增明发布了新的文献求助10
7秒前
学术界的小喽啰完成签到 ,获得积分10
7秒前
小马哥发布了新的文献求助10
7秒前
8秒前
biomds完成签到,获得积分10
8秒前
子车茗应助穷逼学校采纳,获得30
8秒前
仁爱宛筠完成签到,获得积分10
9秒前
冷漠的布丁完成签到,获得积分10
9秒前
10秒前
huanghao完成签到,获得积分10
10秒前
manfullmoon完成签到,获得积分10
11秒前
菲菲发布了新的文献求助10
11秒前
言午完成签到,获得积分10
11秒前
11秒前
Suzzne完成签到,获得积分10
11秒前
12秒前
leoan完成签到,获得积分10
12秒前
muzi发布了新的文献求助10
12秒前
过时的砖头完成签到,获得积分10
12秒前
msl2023完成签到,获得积分10
13秒前
stt完成签到 ,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899272
关于积分的说明 8304996
捐赠科研通 2568569
什么是DOI,文献DOI怎么找? 1395172
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630727