Integrating heterogeneous structures and community semantics for unsupervised community detection in heterogeneous networks

计算机科学 语义学(计算机科学) 异构网络 聚类分析 非负矩阵分解 人工智能 无监督学习 数据挖掘 理论计算机科学 矩阵分解 电信 特征向量 无线网络 物理 量子力学 无线 程序设计语言
作者
Yan Zhao,Weimin Li,Fangfang Liu,Jingchao Wang,Alex Munyole Luvembe
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121821-121821 被引量:1
标识
DOI:10.1016/j.eswa.2023.121821
摘要

Community detection aims to discover hidden communities or groups in complex networks and is essentially unsupervised clustering behavior. However, most of the existing unsupervised methods are designed for homogeneous networks; therefore, they cannot effectively handle heterogeneous structures and rich semantic information. Under such a situation, it is difficult to accurately detect communities in heterogeneous networks that better reflect the real world. Therefore, this work aims to design an unsupervised framework to fuse heterogeneous structure information and interpret the rich semantics of the network in the form of community semantics. Thus, a heterogeneous network community detection method, called HAESF, is introduced. It includes two modules: the Heterogeneous Auto Encoder (HAE) and the Semantic Factorization (SF) modules. In more detail, the HAE module adopts a hierarchical attention scheme to represent and aggregate the heterogeneous structure of the network. And it proposes the concept of heterogeneous information combinatorial graphs for structural reconstruction to achieve unsupervised detection. Concerning the SF module, it focuses on learning the semantic information in the network from the community point of view. It uses nonnegative matrix factorization to decompose the network features for obtaining community semantics. Once both modules are implemented, the objective of restricting community segmentation based on these semantics is achieved. The constraint is based on community semantic homogeneity to correct inaccurate node delineation. Furthermore, to improve the algorithm efficiency, a unified framework is designed to optimize the HAE and SF modules jointly. Within this new framework, the SF loss is innovatively used as a judgmental loss for selective segmentation optimizations, helping to obtain more reliable community detection results. As for the results, extensive experiments are performed on three public datasets. The findings show that HAESF outperforms the other popular unsupervised methods, where the composite score of HAESF is 11.73% ahead of the next best, demonstrating the proposed method’s effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
white完成签到,获得积分10
刚刚
ZJN完成签到,获得积分10
刚刚
英俊的铭应助獭兔采纳,获得10
刚刚
李健应助youlingduxiu采纳,获得10
1秒前
lzh发布了新的文献求助10
1秒前
李成哲发布了新的文献求助10
1秒前
英姑应助淀粉采纳,获得10
1秒前
SciGPT应助淀粉采纳,获得10
1秒前
yyc发布了新的文献求助10
1秒前
丘比特应助小王采纳,获得10
2秒前
3秒前
马腾完成签到,获得积分10
3秒前
goodbuhui发布了新的文献求助10
4秒前
清爽含灵发布了新的文献求助10
4秒前
怡然以南完成签到,获得积分10
4秒前
5秒前
彭于晏应助啾一口香菜采纳,获得10
5秒前
苗条的成仁完成签到,获得积分10
5秒前
爱吃麻辣香锅完成签到,获得积分10
5秒前
6秒前
潘道士完成签到 ,获得积分10
6秒前
Zachary完成签到,获得积分10
6秒前
Kenzonvay发布了新的文献求助10
7秒前
7秒前
7秒前
在在在在在在1完成签到,获得积分20
8秒前
加贝发布了新的文献求助10
9秒前
9秒前
EthanChan完成签到,获得积分10
9秒前
9秒前
华仔应助优秀的怀蕊采纳,获得10
10秒前
温暖完成签到,获得积分20
10秒前
清爽含灵完成签到,获得积分10
11秒前
11秒前
12秒前
jnshen完成签到 ,获得积分10
12秒前
陈懒懒发布了新的文献求助10
12秒前
孙老师发布了新的文献求助10
13秒前
yyc完成签到,获得积分20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122