Integrating heterogeneous structures and community semantics for unsupervised community detection in heterogeneous networks

计算机科学 语义学(计算机科学) 异构网络 聚类分析 非负矩阵分解 人工智能 无监督学习 数据挖掘 理论计算机科学 矩阵分解 无线 程序设计语言 特征向量 物理 无线网络 电信 量子力学
作者
Yan Zhao,Weimin Li,Fangfang Liu,Jingchao Wang,Alex Munyole Luvembe
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121821-121821 被引量:1
标识
DOI:10.1016/j.eswa.2023.121821
摘要

Community detection aims to discover hidden communities or groups in complex networks and is essentially unsupervised clustering behavior. However, most of the existing unsupervised methods are designed for homogeneous networks; therefore, they cannot effectively handle heterogeneous structures and rich semantic information. Under such a situation, it is difficult to accurately detect communities in heterogeneous networks that better reflect the real world. Therefore, this work aims to design an unsupervised framework to fuse heterogeneous structure information and interpret the rich semantics of the network in the form of community semantics. Thus, a heterogeneous network community detection method, called HAESF, is introduced. It includes two modules: the Heterogeneous Auto Encoder (HAE) and the Semantic Factorization (SF) modules. In more detail, the HAE module adopts a hierarchical attention scheme to represent and aggregate the heterogeneous structure of the network. And it proposes the concept of heterogeneous information combinatorial graphs for structural reconstruction to achieve unsupervised detection. Concerning the SF module, it focuses on learning the semantic information in the network from the community point of view. It uses nonnegative matrix factorization to decompose the network features for obtaining community semantics. Once both modules are implemented, the objective of restricting community segmentation based on these semantics is achieved. The constraint is based on community semantic homogeneity to correct inaccurate node delineation. Furthermore, to improve the algorithm efficiency, a unified framework is designed to optimize the HAE and SF modules jointly. Within this new framework, the SF loss is innovatively used as a judgmental loss for selective segmentation optimizations, helping to obtain more reliable community detection results. As for the results, extensive experiments are performed on three public datasets. The findings show that HAESF outperforms the other popular unsupervised methods, where the composite score of HAESF is 11.73% ahead of the next best, demonstrating the proposed method’s effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmy完成签到 ,获得积分10
刚刚
谷粱诗云完成签到,获得积分10
1秒前
周星星同学完成签到 ,获得积分10
1秒前
Nancy完成签到,获得积分10
2秒前
聪明的宛菡完成签到,获得积分10
3秒前
Likz完成签到,获得积分10
5秒前
lunyu完成签到,获得积分10
5秒前
564654SDA完成签到,获得积分10
6秒前
爱吃芋头酥完成签到 ,获得积分10
8秒前
SJW--666完成签到,获得积分10
9秒前
viola0827完成签到 ,获得积分10
11秒前
bian完成签到 ,获得积分10
14秒前
wqc2060完成签到,获得积分10
16秒前
张西西完成签到 ,获得积分10
20秒前
杨tong完成签到 ,获得积分10
20秒前
janer完成签到 ,获得积分10
20秒前
于海丽完成签到,获得积分10
22秒前
胡哈哈发布了新的文献求助10
23秒前
执意完成签到 ,获得积分10
23秒前
zgsn完成签到,获得积分10
27秒前
jichups完成签到,获得积分10
29秒前
ri_290完成签到,获得积分10
30秒前
花园里的蒜完成签到 ,获得积分0
32秒前
闻屿完成签到,获得积分10
32秒前
朴实问筠完成签到 ,获得积分10
34秒前
dungaway完成签到,获得积分10
34秒前
hs完成签到,获得积分10
35秒前
生动的伊完成签到,获得积分10
35秒前
zzll0301完成签到,获得积分10
36秒前
小狗不是抠脚兵完成签到 ,获得积分10
36秒前
胡哈哈完成签到,获得积分10
39秒前
萧布完成签到,获得积分10
40秒前
Raylihuang完成签到,获得积分10
40秒前
年月日完成签到,获得积分10
43秒前
simple完成签到,获得积分10
47秒前
连难胜完成签到 ,获得积分10
48秒前
关关完成签到 ,获得积分10
51秒前
Anonymous完成签到,获得积分10
52秒前
57秒前
HAPPY发布了新的文献求助10
59秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899906
捐赠科研通 2472894
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602144