Integrating heterogeneous structures and community semantics for unsupervised community detection in heterogeneous networks

计算机科学 语义学(计算机科学) 异构网络 聚类分析 非负矩阵分解 人工智能 无监督学习 数据挖掘 理论计算机科学 矩阵分解 电信 特征向量 无线网络 物理 量子力学 无线 程序设计语言
作者
Yan Zhao,Weimin Li,Fangfang Liu,Jingchao Wang,Alex Munyole Luvembe
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121821-121821 被引量:1
标识
DOI:10.1016/j.eswa.2023.121821
摘要

Community detection aims to discover hidden communities or groups in complex networks and is essentially unsupervised clustering behavior. However, most of the existing unsupervised methods are designed for homogeneous networks; therefore, they cannot effectively handle heterogeneous structures and rich semantic information. Under such a situation, it is difficult to accurately detect communities in heterogeneous networks that better reflect the real world. Therefore, this work aims to design an unsupervised framework to fuse heterogeneous structure information and interpret the rich semantics of the network in the form of community semantics. Thus, a heterogeneous network community detection method, called HAESF, is introduced. It includes two modules: the Heterogeneous Auto Encoder (HAE) and the Semantic Factorization (SF) modules. In more detail, the HAE module adopts a hierarchical attention scheme to represent and aggregate the heterogeneous structure of the network. And it proposes the concept of heterogeneous information combinatorial graphs for structural reconstruction to achieve unsupervised detection. Concerning the SF module, it focuses on learning the semantic information in the network from the community point of view. It uses nonnegative matrix factorization to decompose the network features for obtaining community semantics. Once both modules are implemented, the objective of restricting community segmentation based on these semantics is achieved. The constraint is based on community semantic homogeneity to correct inaccurate node delineation. Furthermore, to improve the algorithm efficiency, a unified framework is designed to optimize the HAE and SF modules jointly. Within this new framework, the SF loss is innovatively used as a judgmental loss for selective segmentation optimizations, helping to obtain more reliable community detection results. As for the results, extensive experiments are performed on three public datasets. The findings show that HAESF outperforms the other popular unsupervised methods, where the composite score of HAESF is 11.73% ahead of the next best, demonstrating the proposed method’s effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煎饼煎饼完成签到,获得积分10
刚刚
笑点低靖仇完成签到,获得积分10
刚刚
刚刚
964230130完成签到,获得积分10
刚刚
彭于晏应助香氛采纳,获得10
1秒前
zhuiyu完成签到,获得积分10
1秒前
HXH完成签到,获得积分10
1秒前
小乐子完成签到,获得积分10
2秒前
mwang完成签到,获得积分10
2秒前
嘻嘻哈哈哈哈完成签到 ,获得积分10
2秒前
懦弱的易绿完成签到,获得积分10
2秒前
哈哈哈完成签到,获得积分10
3秒前
大香蕉完成签到,获得积分10
3秒前
3秒前
糕手完成签到 ,获得积分10
3秒前
无聊的万天完成签到,获得积分10
3秒前
唐唐88完成签到,获得积分10
4秒前
脆脆鲨完成签到 ,获得积分10
4秒前
小十七果完成签到,获得积分10
5秒前
5秒前
爱吃肉肉的手性分子完成签到,获得积分10
5秒前
5秒前
xue完成签到 ,获得积分10
5秒前
昨夜雨疏风骤完成签到,获得积分10
5秒前
5秒前
FashionBoy应助不散的和弦采纳,获得10
6秒前
6秒前
6秒前
xrf完成签到,获得积分10
6秒前
新新完成签到,获得积分10
7秒前
nn关闭了nn文献求助
7秒前
yamoon完成签到,获得积分10
7秒前
8秒前
8秒前
害怕的帽子完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
hdn完成签到,获得积分10
9秒前
曾无忧发布了新的文献求助10
9秒前
举个栗子8完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959