Prediction of early death after atrial fibrillation diagnosis using a machine learning approach: A French nationwide cohort study

医学 心房颤动 队列 内科学 临床预测规则 队列研究 心脏病学 共病
作者
Arnaud Bisson,Yassine Lemrini,Giulio Francesco Romiti,Marco Proietti,Denis Angoulvant,Sidahmed Bentounes,Wahbi K. El‐Bouri,Gregory Y.H. Lip,Laurent Fauchier
出处
期刊:American Heart Journal [Elsevier]
卷期号:265: 191-202 被引量:3
标识
DOI:10.1016/j.ahj.2023.08.006
摘要

Atrial fibrillation is associated with important mortality but the usual clinical risk factor based scores only modestly predict mortality. This study aimed to develop machine learning models for the prediction of death occurrence within the year following atrial fibrillation diagnosis and compare predictive ability against usual clinical risk scores.We used a nationwide cohort of 2,435,541 newly diagnosed atrial fibrillation patients seen in French hospitals from 2011 to 2019. Three machine learning models were trained to predict mortality within the first year using a training set (70% of the cohort). The best model was selected to be evaluated and compared with previously published scores on the validation set (30% of the cohort). Discrimination of the best model was evaluated using the C index. Within the first year following atrial fibrillation diagnosis, 342,005 patients (14.4%) died after a period of 83 (SD 98) days (median 37 [10-129]). The best machine learning model selected was a deep neural network with a C index of 0.785 (95% CI, 0.781-0.789) on the validation set. Compared to clinical risk scores, the selected model was superior to the CHA2DS2-VASc and HAS-BLED risk scores and superior to dedicated scores such as Charlson Comorbidity Index and Hospital Frailty Risk Score to predict death within the year following atrial fibrillation diagnosis (C indexes: 0.597; 0.562; 0.643; 0.626 respectively. P < .0001).Machine learning algorithms predict early death after atrial fibrillation diagnosis and may help clinicians to better risk stratify atrial fibrillation patients at high risk of mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
PRUNUS应助l璐w璐l采纳,获得10
2秒前
西柚完成签到,获得积分10
2秒前
FashionBoy应助兔毛毛采纳,获得10
4秒前
5秒前
5秒前
6秒前
标致万声发布了新的文献求助10
6秒前
6秒前
李李李发布了新的文献求助10
6秒前
l璐w璐l完成签到,获得积分10
10秒前
11秒前
ste发布了新的文献求助10
11秒前
糖果发布了新的文献求助10
12秒前
lele发布了新的文献求助10
14秒前
田様应助hulin_zjxu采纳,获得10
15秒前
15秒前
汤绮菱完成签到,获得积分10
17秒前
VDC发布了新的文献求助10
19秒前
ste完成签到,获得积分10
21秒前
爆米花应助崔昕雨采纳,获得10
22秒前
obito发布了新的文献求助10
22秒前
乔柒柒完成签到,获得积分10
24秒前
王翎力完成签到,获得积分10
24秒前
你好阳光发布了新的文献求助10
24秒前
yoyo完成签到,获得积分10
24秒前
酷波er应助糖果采纳,获得10
26秒前
29秒前
小蒋完成签到 ,获得积分10
34秒前
可儿发布了新的文献求助10
34秒前
正直的半梅完成签到,获得积分10
35秒前
桐桐应助whh采纳,获得10
35秒前
35秒前
李明发布了新的文献求助10
36秒前
meta完成签到,获得积分10
37秒前
alltoowell完成签到,获得积分0
39秒前
崔昕雨发布了新的文献求助10
40秒前
40秒前
小袁同学发布了新的文献求助10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233