Prediction of early death after atrial fibrillation diagnosis using a machine learning approach: A French nationwide cohort study

医学 心房颤动 队列 内科学 临床预测规则 队列研究 心脏病学 共病
作者
Arnaud Bisson,Yassine Lemrini,Giulio Francesco Romiti,Marco Proietti,Denis Angoulvant,Sidahmed Bentounes,Wahbi K. El‐Bouri,Gregory Y.H. Lip,Laurent Fauchier
出处
期刊:American Heart Journal [Elsevier BV]
卷期号:265: 191-202 被引量:3
标识
DOI:10.1016/j.ahj.2023.08.006
摘要

Atrial fibrillation is associated with important mortality but the usual clinical risk factor based scores only modestly predict mortality. This study aimed to develop machine learning models for the prediction of death occurrence within the year following atrial fibrillation diagnosis and compare predictive ability against usual clinical risk scores.We used a nationwide cohort of 2,435,541 newly diagnosed atrial fibrillation patients seen in French hospitals from 2011 to 2019. Three machine learning models were trained to predict mortality within the first year using a training set (70% of the cohort). The best model was selected to be evaluated and compared with previously published scores on the validation set (30% of the cohort). Discrimination of the best model was evaluated using the C index. Within the first year following atrial fibrillation diagnosis, 342,005 patients (14.4%) died after a period of 83 (SD 98) days (median 37 [10-129]). The best machine learning model selected was a deep neural network with a C index of 0.785 (95% CI, 0.781-0.789) on the validation set. Compared to clinical risk scores, the selected model was superior to the CHA2DS2-VASc and HAS-BLED risk scores and superior to dedicated scores such as Charlson Comorbidity Index and Hospital Frailty Risk Score to predict death within the year following atrial fibrillation diagnosis (C indexes: 0.597; 0.562; 0.643; 0.626 respectively. P < .0001).Machine learning algorithms predict early death after atrial fibrillation diagnosis and may help clinicians to better risk stratify atrial fibrillation patients at high risk of mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只想发财完成签到 ,获得积分10
刚刚
刚刚
TheBugsss完成签到,获得积分10
1秒前
悦耳玲完成签到 ,获得积分10
1秒前
1秒前
脑洞疼应助小高同学采纳,获得10
2秒前
大胆人英完成签到,获得积分10
2秒前
cccccl发布了新的文献求助10
3秒前
汉堡包应助温婉的幻梦采纳,获得10
3秒前
堂风完成签到,获得积分10
4秒前
念云完成签到,获得积分10
5秒前
何求完成签到,获得积分10
6秒前
炜博发布了新的文献求助10
6秒前
小李老博应助xmyyy采纳,获得10
6秒前
落忆完成签到 ,获得积分10
7秒前
7秒前
彻底完成签到,获得积分10
8秒前
woods完成签到,获得积分10
8秒前
sycamore完成签到,获得积分10
8秒前
犬狗狗完成签到 ,获得积分10
8秒前
小小超完成签到 ,获得积分10
10秒前
decademe完成签到,获得积分10
10秒前
包李完成签到,获得积分10
11秒前
眼睛大的松鼠完成签到 ,获得积分10
11秒前
儒雅龙完成签到 ,获得积分10
11秒前
王安娜完成签到 ,获得积分20
11秒前
心斋发布了新的文献求助10
11秒前
呵呵喊我完成签到,获得积分10
12秒前
12秒前
前排61完成签到 ,获得积分10
12秒前
阿枫完成签到,获得积分10
13秒前
xiaoqianqian174完成签到,获得积分10
14秒前
张张完成签到 ,获得积分10
15秒前
炜博完成签到,获得积分10
15秒前
WSGQT完成签到 ,获得积分10
16秒前
lzylzy完成签到,获得积分10
16秒前
凌霄完成签到 ,获得积分10
16秒前
呆萌笑晴完成签到,获得积分10
17秒前
轻爱完成签到,获得积分10
18秒前
简柠完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736836
求助须知:如何正确求助?哪些是违规求助? 3280783
关于积分的说明 10020943
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749689