Chronic disease prediction with deep convolution based modified extreme-random forest classifier

随机森林 计算机科学 分类器(UML) 人工智能 决策树 机器学习 卷积神经网络 人工神经网络 数据挖掘
作者
S. Rajeashwari,K. Arunesh
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105425-105425
标识
DOI:10.1016/j.bspc.2023.105425
摘要

A disease is said to be chronic when a disease occurs in an individual and their health conditions due to the disease last one year/more. Predicting chronic diseases have become crucial to save individual’s life and enhance their well-being. Though traditional clinical procedures are considered to perform this, it seems to be a time consuming process. Concurrently, with the progress of data mining algorithms, researchers have attempted to use different algorithms for such prediction. Nevertheless, they have been ineffective in feature extraction that negatively affected the prediction rate. To combat issues with regard to low accuracy rate, the present research intends to perform prediction of four common chronic diseases (breast cancer, heart disease, diabetes and kidney disease) affecting people worldwide. To accomplish this, the research proposes dual Deep CNN (Deep Convolutional Neural Network) for feature extraction. In this case, optimal, maximum and minimum hidden layers are used for extracting relevant features. Further, ME-RF (Modified Extreme-Random Forest) is used for classification. In this process, the research considers XGBoost algorithm comprising of certain innate advantages like high convergence and modest computations. However, when the predictability of this model is poor, it works in an ideal manner with numerous leaves in DT (Decision Tree). Simultaneously, RF comprise of several trees with equal weighted leaves by which, maximum precision and accuracy could be attained flexibly with the prevailing data. Considering this, the trees are built with RF and the research introduces this process as ME-RF. Classification performance is evaluated individually on four different considered datasets under the implementation of minimum and maximum Deep CNN network and also with the use of combined dual deep CNN networks. The overall analytical outcomes confirms the effectiveness of the proposed system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助hancahngxiao采纳,获得10
1秒前
张耀文发布了新的文献求助10
1秒前
1秒前
二掌柜发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
wanci应助YYY采纳,获得10
4秒前
5秒前
6秒前
田様应助无私的凌丝采纳,获得10
6秒前
橙子发布了新的文献求助10
6秒前
H2CO3发布了新的文献求助10
7秒前
7秒前
8秒前
跳跃的笑白完成签到,获得积分10
9秒前
星辰大海应助ahui采纳,获得10
9秒前
9秒前
桃花不换酒完成签到,获得积分10
10秒前
10秒前
10秒前
LUNWENREQUEST发布了新的文献求助10
11秒前
bingbing完成签到,获得积分10
11秒前
星月夜发布了新的文献求助10
11秒前
Ricky发布了新的文献求助10
12秒前
曹小仙男完成签到 ,获得积分10
12秒前
13秒前
fan发布了新的文献求助10
14秒前
鸣笛应助橙子采纳,获得20
15秒前
蔡蔡完成签到,获得积分10
15秒前
15秒前
18秒前
Ricky完成签到,获得积分10
18秒前
19秒前
张文懿发布了新的文献求助10
20秒前
英俊的铭应助ll采纳,获得10
21秒前
zhangyu应助红毛兔采纳,获得10
23秒前
鸣笛应助红毛兔采纳,获得30
23秒前
小杰杰完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014