亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chronic disease prediction with deep convolution based modified extreme-random forest classifier

随机森林 计算机科学 分类器(UML) 人工智能 决策树 机器学习 卷积神经网络 人工神经网络 数据挖掘
作者
S. Rajeashwari,K. Arunesh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105425-105425
标识
DOI:10.1016/j.bspc.2023.105425
摘要

A disease is said to be chronic when a disease occurs in an individual and their health conditions due to the disease last one year/more. Predicting chronic diseases have become crucial to save individual’s life and enhance their well-being. Though traditional clinical procedures are considered to perform this, it seems to be a time consuming process. Concurrently, with the progress of data mining algorithms, researchers have attempted to use different algorithms for such prediction. Nevertheless, they have been ineffective in feature extraction that negatively affected the prediction rate. To combat issues with regard to low accuracy rate, the present research intends to perform prediction of four common chronic diseases (breast cancer, heart disease, diabetes and kidney disease) affecting people worldwide. To accomplish this, the research proposes dual Deep CNN (Deep Convolutional Neural Network) for feature extraction. In this case, optimal, maximum and minimum hidden layers are used for extracting relevant features. Further, ME-RF (Modified Extreme-Random Forest) is used for classification. In this process, the research considers XGBoost algorithm comprising of certain innate advantages like high convergence and modest computations. However, when the predictability of this model is poor, it works in an ideal manner with numerous leaves in DT (Decision Tree). Simultaneously, RF comprise of several trees with equal weighted leaves by which, maximum precision and accuracy could be attained flexibly with the prevailing data. Considering this, the trees are built with RF and the research introduces this process as ME-RF. Classification performance is evaluated individually on four different considered datasets under the implementation of minimum and maximum Deep CNN network and also with the use of combined dual deep CNN networks. The overall analytical outcomes confirms the effectiveness of the proposed system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
郜南烟发布了新的文献求助10
1分钟前
SciGPT应助郜南烟采纳,获得10
1分钟前
Meredith完成签到,获得积分10
4分钟前
4分钟前
郜南烟发布了新的文献求助10
4分钟前
舒心豪英完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
郜南烟发布了新的文献求助10
6分钟前
可爱的函函应助郜南烟采纳,获得10
6分钟前
Miracle完成签到,获得积分10
6分钟前
Claire完成签到 ,获得积分10
7分钟前
充电宝应助圆圆的波仔采纳,获得100
8分钟前
舒心远侵发布了新的文献求助10
8分钟前
可爱的函函应助舒心远侵采纳,获得10
9分钟前
zoie0809完成签到,获得积分10
9分钟前
Emperor完成签到 ,获得积分0
9分钟前
舒心远侵完成签到,获得积分10
9分钟前
天天快乐应助高小羊采纳,获得10
11分钟前
12分钟前
高小羊发布了新的文献求助10
12分钟前
打打应助郜南烟采纳,获得10
12分钟前
高小羊完成签到,获得积分10
12分钟前
LouieHuang完成签到,获得积分20
13分钟前
13分钟前
郜南烟发布了新的文献求助10
13分钟前
wanci应助郜南烟采纳,获得10
13分钟前
上官若男应助zhangyimg采纳,获得10
13分钟前
13分钟前
Lorin完成签到 ,获得积分10
13分钟前
14分钟前
zhangyimg发布了新的文献求助10
14分钟前
科目三应助zhangyimg采纳,获得10
14分钟前
gszy1975完成签到,获得积分10
14分钟前
圆圆的波仔发布了新的文献求助100
15分钟前
JamesPei应助科研通管家采纳,获得10
15分钟前
郗妫完成签到,获得积分10
15分钟前
16分钟前
郜南烟发布了新的文献求助10
16分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826647
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527