Generalized fuzzy hypergraph for link prediction and identification of influencers in dynamic social media networks

模糊逻辑 计算机科学 二元关系 鉴定(生物学) 数据挖掘 关系(数据库) 影响力营销 超图 理论计算机科学 模糊集 人工智能 数学 离散数学 植物 生物 关系营销 业务 营销 市场营销管理
作者
Narjes Firouzkouhi,Abbas Amini,Ahmed Bani‐Mustafa,Arash Mehdizadeh,Sadeq Damrah,Ahmad Gholami,Chun Cheng,Bijan Davvaz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121736-121736 被引量:6
标识
DOI:10.1016/j.eswa.2023.121736
摘要

Despite the importance of link prediction and identification of influencers in dynamic social media systems, the existing methodical theories are not capable of analyzing complex multilayer relations in social media networks which contain uncertainty. In fact, there is no theoretical exploration concurrently focused on multidimensional and interrelated entities in a fuzzy-based social media environment. To cover this gap, a neoteric generalized fuzzy hypergraph (GFH) methodology is designed using developed n-ary fuzzy relation technique that is the extension of convolutional binary fuzzy relation. Characterizing reflexive, symmetric, transitive, composition, t-cut and support techniques is carried out for multidimensional uncertain-based space. Also, a graphical approach is created in the generalized fuzzy hypergraph to assist the derivation of foundational implications and concepts. The GFH framework can be applied for the intelligent management of complex systems for sole or mass users of local and global social media platforms by adopting specific membership degree for each individual. To predict the linkages between elements, a fuzzy-based indicator FLP (fuzzy link prediction) is promoted, along with the indicator of SIR (score of interaction rate) to identify the influencers (strongest communicators) in an uncertain space. Through the FLP evaluation, the extracted data are analyzed as per the highest value of 1 for single, 3 for binary, 3.8 for triplet, and 0.9 for quaternary spaces for their probable links. Through the analysis of SIR data on the individuals' membership degrees for the usage of social media platforms, the highest interaction value of 0.99 is correlated to a single member, while 5.42 magnitude addresses an influential person. The performance results show that the presented theoretical and structural approach, that is superior to the classical graph theories, is promising to configure intelligent expert systems, predict the likelihood of connections, detect communities, and specify the influencers in real social media platforms that contain uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的芒果完成签到,获得积分10
刚刚
柔弱雅彤发布了新的文献求助10
刚刚
可爱的函函应助初一采纳,获得10
1秒前
1秒前
2秒前
个性的紫菜应助JIAN采纳,获得10
2秒前
旭东静静发布了新的文献求助10
3秒前
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
pp发布了新的文献求助10
7秒前
7秒前
未转头时皆梦完成签到,获得积分10
7秒前
脑洞疼应助hankpotter采纳,获得10
8秒前
SciGPT应助xiaoyuzi采纳,获得20
8秒前
芮rich完成签到,获得积分10
8秒前
a379896033完成签到 ,获得积分10
9秒前
望TIAN完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
syleaf完成签到 ,获得积分10
11秒前
今后应助圆锥香蕉采纳,获得20
11秒前
微笑孤云完成签到 ,获得积分10
11秒前
完美的沉鱼完成签到 ,获得积分10
12秒前
xutingfeng发布了新的文献求助10
12秒前
12秒前
13秒前
英俊的铭应助hrr采纳,获得10
13秒前
13秒前
望TIAN发布了新的文献求助10
14秒前
彭于晏应助pp采纳,获得10
14秒前
小二郎应助葡萄树采纳,获得10
14秒前
Owen应助summing采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106