Generalized fuzzy hypergraph for link prediction and identification of influencers in dynamic social media networks

模糊逻辑 计算机科学 二元关系 鉴定(生物学) 数据挖掘 关系(数据库) 影响力营销 超图 理论计算机科学 模糊集 人工智能 数学 离散数学 植物 生物 关系营销 业务 营销 市场营销管理
作者
Narjes Firouzkouhi,Abbas Amini,Ahmed Bani‐Mustafa,Arash Mehdizadeh,Sadeq Damrah,Ahmad Gholami,Chun Cheng,Bijan Davvaz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121736-121736 被引量:6
标识
DOI:10.1016/j.eswa.2023.121736
摘要

Despite the importance of link prediction and identification of influencers in dynamic social media systems, the existing methodical theories are not capable of analyzing complex multilayer relations in social media networks which contain uncertainty. In fact, there is no theoretical exploration concurrently focused on multidimensional and interrelated entities in a fuzzy-based social media environment. To cover this gap, a neoteric generalized fuzzy hypergraph (GFH) methodology is designed using developed n-ary fuzzy relation technique that is the extension of convolutional binary fuzzy relation. Characterizing reflexive, symmetric, transitive, composition, t-cut and support techniques is carried out for multidimensional uncertain-based space. Also, a graphical approach is created in the generalized fuzzy hypergraph to assist the derivation of foundational implications and concepts. The GFH framework can be applied for the intelligent management of complex systems for sole or mass users of local and global social media platforms by adopting specific membership degree for each individual. To predict the linkages between elements, a fuzzy-based indicator FLP (fuzzy link prediction) is promoted, along with the indicator of SIR (score of interaction rate) to identify the influencers (strongest communicators) in an uncertain space. Through the FLP evaluation, the extracted data are analyzed as per the highest value of 1 for single, 3 for binary, 3.8 for triplet, and 0.9 for quaternary spaces for their probable links. Through the analysis of SIR data on the individuals' membership degrees for the usage of social media platforms, the highest interaction value of 0.99 is correlated to a single member, while 5.42 magnitude addresses an influential person. The performance results show that the presented theoretical and structural approach, that is superior to the classical graph theories, is promising to configure intelligent expert systems, predict the likelihood of connections, detect communities, and specify the influencers in real social media platforms that contain uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Jonathan采纳,获得10
刚刚
刚刚
刚刚
风中的静珊完成签到 ,获得积分10
刚刚
大个应助没有你不行采纳,获得10
刚刚
Hello应助溴氧铋采纳,获得10
1秒前
JamesPei应助溴氧铋采纳,获得10
1秒前
1秒前
淋湿巴黎完成签到,获得积分10
2秒前
蒲公英发布了新的文献求助30
2秒前
英姑应助小刘采纳,获得10
2秒前
彭于晏应助糖糖采纳,获得10
3秒前
无花果应助小猪不吃佩奇采纳,获得10
4秒前
牧秋妈妈发布了新的文献求助10
4秒前
TaoJ发布了新的文献求助10
4秒前
4秒前
日常卖命完成签到,获得积分10
5秒前
5秒前
huohuo发布了新的文献求助10
6秒前
顾大喵完成签到,获得积分10
6秒前
ccc完成签到 ,获得积分10
6秒前
JamesPei应助石刘气泡shui采纳,获得10
6秒前
Phaladius发布了新的文献求助10
7秒前
我喜盖棉被完成签到,获得积分20
7秒前
丘比特应助溴氧铋采纳,获得10
7秒前
我是老大应助溴氧铋采纳,获得10
7秒前
完美世界应助溴氧铋采纳,获得10
7秒前
领导范儿应助溴氧铋采纳,获得10
7秒前
天天快乐应助溴氧铋采纳,获得10
7秒前
聪慧的乐驹完成签到,获得积分10
7秒前
7秒前
shine发布了新的文献求助10
7秒前
香蕉觅云应助溴氧铋采纳,获得10
7秒前
7秒前
天天快乐应助溴氧铋采纳,获得10
7秒前
SYLH应助溴氧铋采纳,获得10
8秒前
CodeCraft应助笨笨芯采纳,获得20
8秒前
趴菜同学发布了新的文献求助10
8秒前
完美世界应助Eden采纳,获得10
8秒前
司空不凡应助dddd采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474135
求助须知:如何正确求助?哪些是违规求助? 3066512
关于积分的说明 9099287
捐赠科研通 2757760
什么是DOI,文献DOI怎么找? 1513110
邀请新用户注册赠送积分活动 699386
科研通“疑难数据库(出版商)”最低求助积分说明 698921