Generalized fuzzy hypergraph for link prediction and identification of influencers in dynamic social media networks

模糊逻辑 计算机科学 二元关系 鉴定(生物学) 数据挖掘 关系(数据库) 影响力营销 超图 理论计算机科学 模糊集 人工智能 数学 离散数学 植物 生物 关系营销 业务 营销 市场营销管理
作者
Narjes Firouzkouhi,Abbas Amini,Ahmed Bani‐Mustafa,Arash Mehdizadeh,Sadeq Damrah,Ahmad Gholami,Chun Cheng,Bijan Davvaz
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121736-121736 被引量:6
标识
DOI:10.1016/j.eswa.2023.121736
摘要

Despite the importance of link prediction and identification of influencers in dynamic social media systems, the existing methodical theories are not capable of analyzing complex multilayer relations in social media networks which contain uncertainty. In fact, there is no theoretical exploration concurrently focused on multidimensional and interrelated entities in a fuzzy-based social media environment. To cover this gap, a neoteric generalized fuzzy hypergraph (GFH) methodology is designed using developed n-ary fuzzy relation technique that is the extension of convolutional binary fuzzy relation. Characterizing reflexive, symmetric, transitive, composition, t-cut and support techniques is carried out for multidimensional uncertain-based space. Also, a graphical approach is created in the generalized fuzzy hypergraph to assist the derivation of foundational implications and concepts. The GFH framework can be applied for the intelligent management of complex systems for sole or mass users of local and global social media platforms by adopting specific membership degree for each individual. To predict the linkages between elements, a fuzzy-based indicator FLP (fuzzy link prediction) is promoted, along with the indicator of SIR (score of interaction rate) to identify the influencers (strongest communicators) in an uncertain space. Through the FLP evaluation, the extracted data are analyzed as per the highest value of 1 for single, 3 for binary, 3.8 for triplet, and 0.9 for quaternary spaces for their probable links. Through the analysis of SIR data on the individuals' membership degrees for the usage of social media platforms, the highest interaction value of 0.99 is correlated to a single member, while 5.42 magnitude addresses an influential person. The performance results show that the presented theoretical and structural approach, that is superior to the classical graph theories, is promising to configure intelligent expert systems, predict the likelihood of connections, detect communities, and specify the influencers in real social media platforms that contain uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
幸运星辰完成签到 ,获得积分10
1秒前
田様应助纯真汉堡采纳,获得10
1秒前
费春鹏完成签到,获得积分10
3秒前
3秒前
科研通AI6.1应助淡然绝山采纳,获得10
3秒前
3秒前
AUK发布了新的文献求助10
5秒前
轨迹应助我不是王美嘉采纳,获得10
7秒前
flawless完成签到,获得积分10
7秒前
田超完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
luermei发布了新的文献求助10
8秒前
科目三应助辣辣采纳,获得10
9秒前
小刘完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
朴实颤完成签到,获得积分10
13秒前
追忆淮发布了新的文献求助10
13秒前
翁sir完成签到,获得积分10
14秒前
14秒前
14秒前
阳光以山发布了新的文献求助10
17秒前
17秒前
搜集达人应助陈陈陈采纳,获得10
17秒前
BABY五齿完成签到,获得积分10
17秒前
18秒前
20秒前
21秒前
Radisson完成签到,获得积分10
22秒前
昵称发布了新的文献求助10
23秒前
孙雪松发布了新的文献求助10
24秒前
稻草人完成签到,获得积分10
24秒前
25秒前
26秒前
眯眯眼的板栗完成签到,获得积分10
27秒前
xiaohan,JIA完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793595
求助须知:如何正确求助?哪些是违规求助? 5750649
关于积分的说明 15486388
捐赠科研通 4920552
什么是DOI,文献DOI怎么找? 2648996
邀请新用户注册赠送积分活动 1596327
关于科研通互助平台的介绍 1550885