已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comprehensive transcriptomic analysis and machine learning reveal unique gene expression profiles in patients with immune‐mediated necrotizing myopathy

小桶 生物 基因表达 基因 免疫系统 基因表达谱 肌病 计算生物学 转录组 免疫学 遗传学
作者
Hongjiang Liu,Lin Deng,Yixue Guo,Huan Liu,Qing Chen,Jiaqian Zhang,Jingjing Ran,Geng Yin,Qibing Xie
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:2
标识
DOI:10.1002/jgm.3598
摘要

Abstract Background Immune‐mediated necrotizing myopathy (IMNM) is an autoimmune myopathy characterized by severe proximal weakness and muscle fiber necrosis, yet its pathogenesis remains unclear. So far, there are few bioinformatics studies on underlying pathogenic genes and infiltrating immune cell profiles of IMNM. Therefore, we aimed to characterize differentially expressed genes (DEGs) and infiltrating cells in IMNM muscle biopsy specimens, which may be useful for elucidating the pathogenesis of IMNM. Methods Three datasets (GSE39454, GSE48280 and GSE128470) of gene expression profiling related to IMNM were obtained from the Gene Expression Omnibus database. Data were normalized, and DEG analysis was performed using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using clusterProfiler. The CIBERSORT algorithm was performed to identify infiltrating cells. Machine learning algorithm and gene set enrichment analysis (GSEA) were performed to find distinctive gene signatures and the underlying signaling pathways of IMNM. Results DEG analysis identified upregulated and downregulated in IMNM muscle compared to the gene expression levels of other groups. GO and KEGG analysis showed that the pathogenesis of IMNM was notable for the under‐representation of pathways that were important in dermatomyositis and inclusion body myositis. Three immune cells (M2 macrophages, resting dendritic cells and resting natural killer cells) with differential infiltration and five key genes (NDUFAF7, POLR2J, CD99, ARF5 and SKAP2) in patients with IMNM were identified through the CIBERSORT and machine learning algorithm. The GSEA results revealed that the key genes were remarkably enriched in diverse immunological and muscle metabolism‐related pathways. Conclusions We comprehensively explored immunological landscape of IMNM, which is indicative for the research of IMNM pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzh发布了新的文献求助10
刚刚
优秀的枕头完成签到,获得积分10
1秒前
大雪封山发布了新的文献求助10
2秒前
fsznc1完成签到 ,获得积分0
3秒前
四氧化三铁完成签到,获得积分10
6秒前
zpj完成签到 ,获得积分10
10秒前
猪猪hero应助香潘潘的楠瓜采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
迟大猫应助科研通管家采纳,获得10
19秒前
QY11发布了新的文献求助10
19秒前
Grayball应助科研通管家采纳,获得10
19秒前
开心岩应助科研通管家采纳,获得10
20秒前
迟大猫应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Grayball应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Grayball应助科研通管家采纳,获得10
20秒前
hdh完成签到,获得积分10
20秒前
20秒前
迟大猫应助科研通管家采纳,获得10
20秒前
迟大猫应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
迟大猫应助科研通管家采纳,获得10
20秒前
Grayball应助科研通管家采纳,获得10
20秒前
迟大猫应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Grayball应助科研通管家采纳,获得10
21秒前
迟大猫应助科研通管家采纳,获得10
21秒前
迟大猫应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
Grayball应助科研通管家采纳,获得10
21秒前
迟大猫应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671119
求助须知:如何正确求助?哪些是违规求助? 3228030
关于积分的说明 9778011
捐赠科研通 2938277
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962