Eyelid’s Intrinsic Motion-Aware Feature Learning for Real-Time Eyeblink Detection in the Wild

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 眼睑 模式识别(心理学) 语言学 医学 哲学 外科
作者
Wenzheng Zeng,Yang Xiao,Guilei Hu,Zhiguo Cao,Sicheng Wei,Zhiwen Fang,Joey Tianyi Zhou,Junsong Yuan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5109-5121 被引量:5
标识
DOI:10.1109/tifs.2023.3301728
摘要

Real-time eyeblink detection in the wild is a recently emerged challenging task that suffers from dramatic variations in face attribute, pose, illumination, camera view and distance, etc. One key issue is to well characterize eyelid's intrinsic motion (i.e., approaching and departure between upper and lower eyelid) robustly, under unconstrained conditions. Towards this, a novel eyelid's intrinsic motion-aware feature learning approach is proposed. Our proposition lies in 3 folds. First, the feature extractor is led to focus on informative eye region adaptively via introducing visual attention in a coarse-to-fine way, to guarantee robustness and fine-grained descriptive ability jointly. Then, 2 constraints are proposed to make feature learning be aware of eyelid's intrinsic motion. Particularly, one concerns the fact that the inter-frame feature divergence within eyeblink processes should be greater than non-eyeblink ones to better reveal eyelid's intrinsic motion. The other constraint minimizes the feature divergence of non-eyeblink samples, to suppress motion clues due to head or camera movement, illumination change, etc. Meanwhile, concerning the high ambiguity between eyeblink and non-eyeblink samples, soft sample labels are acquired via self-knowledge distillation to conduct feature learning with finer supervision than the hard ones. The experiments verify that, our proposition is significantly superior to the state-of-the-art ones (i.e., advantage on F1-score over 7%) and with real-time running efficiency. It is also of strong generalization capacity towards constrained conditions. The source code will be released upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SONGYEZI完成签到,获得积分0
10秒前
邵翎365发布了新的文献求助10
14秒前
机灵映雁完成签到 ,获得积分10
14秒前
Nic完成签到,获得积分10
21秒前
sunshine发布了新的文献求助10
26秒前
CLTTTt完成签到,获得积分10
31秒前
阜睿完成签到 ,获得积分10
31秒前
36秒前
卞卞完成签到,获得积分10
37秒前
49秒前
火星上小土豆完成签到 ,获得积分10
49秒前
爱撒娇的孤丹完成签到 ,获得积分10
51秒前
xc完成签到,获得积分10
51秒前
CHANG完成签到 ,获得积分10
53秒前
陈海明发布了新的文献求助10
53秒前
pep完成签到 ,获得积分10
1分钟前
科研小哥完成签到,获得积分10
1分钟前
小谭完成签到 ,获得积分10
1分钟前
连难胜完成签到 ,获得积分10
1分钟前
友好语风完成签到,获得积分10
1分钟前
陈海明完成签到,获得积分10
1分钟前
ikun0000完成签到,获得积分10
1分钟前
她的城完成签到,获得积分0
1分钟前
1分钟前
ding应助烂漫的汲采纳,获得10
1分钟前
胡杨发布了新的文献求助10
1分钟前
Wmhan完成签到 ,获得积分10
1分钟前
寇婧怡完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
糊涂涂完成签到 ,获得积分10
1分钟前
烂漫的汲完成签到,获得积分10
1分钟前
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
我啊完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助股价采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
Jason-1024完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255