Eyelid’s Intrinsic Motion-Aware Feature Learning for Real-Time Eyeblink Detection in the Wild

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 眼睑 模式识别(心理学) 语言学 医学 哲学 外科
作者
Wenzheng Zeng,Yang Xiao,Guilei Hu,Zhiguo Cao,Sicheng Wei,Zhiwen Fang,Joey Tianyi Zhou,Junsong Yuan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5109-5121 被引量:5
标识
DOI:10.1109/tifs.2023.3301728
摘要

Real-time eyeblink detection in the wild is a recently emerged challenging task that suffers from dramatic variations in face attribute, pose, illumination, camera view and distance, etc. One key issue is to well characterize eyelid's intrinsic motion (i.e., approaching and departure between upper and lower eyelid) robustly, under unconstrained conditions. Towards this, a novel eyelid's intrinsic motion-aware feature learning approach is proposed. Our proposition lies in 3 folds. First, the feature extractor is led to focus on informative eye region adaptively via introducing visual attention in a coarse-to-fine way, to guarantee robustness and fine-grained descriptive ability jointly. Then, 2 constraints are proposed to make feature learning be aware of eyelid's intrinsic motion. Particularly, one concerns the fact that the inter-frame feature divergence within eyeblink processes should be greater than non-eyeblink ones to better reveal eyelid's intrinsic motion. The other constraint minimizes the feature divergence of non-eyeblink samples, to suppress motion clues due to head or camera movement, illumination change, etc. Meanwhile, concerning the high ambiguity between eyeblink and non-eyeblink samples, soft sample labels are acquired via self-knowledge distillation to conduct feature learning with finer supervision than the hard ones. The experiments verify that, our proposition is significantly superior to the state-of-the-art ones (i.e., advantage on F1-score over 7%) and with real-time running efficiency. It is also of strong generalization capacity towards constrained conditions. The source code will be released upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱撒娇的香烟完成签到,获得积分10
刚刚
1秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
一去完成签到 ,获得积分10
2秒前
slgzhangtao发布了新的文献求助10
2秒前
Hannah完成签到,获得积分10
4秒前
4秒前
花火妖妖完成签到,获得积分10
4秒前
碧蓝的盼夏完成签到,获得积分10
4秒前
优美茹妖完成签到,获得积分10
4秒前
天开眼完成签到,获得积分10
4秒前
追风少侠李二狗完成签到,获得积分10
5秒前
子车半烟完成签到,获得积分10
5秒前
like完成签到 ,获得积分10
5秒前
向上完成签到,获得积分10
5秒前
获奖感言完成签到,获得积分10
5秒前
yin印完成签到 ,获得积分10
5秒前
6秒前
咕噜噜完成签到,获得积分10
6秒前
chase完成签到,获得积分10
6秒前
柔弱翎完成签到,获得积分10
6秒前
年轻的路人完成签到,获得积分10
6秒前
思源应助老的火龙果采纳,获得10
6秒前
涟漪发布了新的文献求助10
6秒前
北枳完成签到 ,获得积分10
6秒前
秋澄完成签到 ,获得积分10
6秒前
ze完成签到,获得积分20
7秒前
nuul完成签到,获得积分10
7秒前
7秒前
香蕉静芙完成签到,获得积分10
7秒前
lms发布了新的文献求助10
8秒前
baomingqiu完成签到 ,获得积分10
8秒前
结实新波完成签到,获得积分10
8秒前
8秒前
科研通AI5应助小小采纳,获得10
9秒前
viogriffin完成签到,获得积分10
9秒前
Sunbrust完成签到 ,获得积分10
9秒前
三三完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067259
求助须知:如何正确求助?哪些是违规求助? 4289056
关于积分的说明 13361711
捐赠科研通 4108580
什么是DOI,文献DOI怎么找? 2249784
邀请新用户注册赠送积分活动 1255173
关于科研通互助平台的介绍 1187721