Eyelid’s Intrinsic Motion-Aware Feature Learning for Real-Time Eyeblink Detection in the Wild

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 眼睑 模式识别(心理学) 医学 哲学 语言学 外科
作者
Wenzheng Zeng,Yang Xiao,Guilei Hu,Zhiguo Cao,Sicheng Wei,Zhiwen Fang,Joey Tianyi Zhou,Junsong Yuan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5109-5121 被引量:5
标识
DOI:10.1109/tifs.2023.3301728
摘要

Real-time eyeblink detection in the wild is a recently emerged challenging task that suffers from dramatic variations in face attribute, pose, illumination, camera view and distance, etc. One key issue is to well characterize eyelid's intrinsic motion (i.e., approaching and departure between upper and lower eyelid) robustly, under unconstrained conditions. Towards this, a novel eyelid's intrinsic motion-aware feature learning approach is proposed. Our proposition lies in 3 folds. First, the feature extractor is led to focus on informative eye region adaptively via introducing visual attention in a coarse-to-fine way, to guarantee robustness and fine-grained descriptive ability jointly. Then, 2 constraints are proposed to make feature learning be aware of eyelid's intrinsic motion. Particularly, one concerns the fact that the inter-frame feature divergence within eyeblink processes should be greater than non-eyeblink ones to better reveal eyelid's intrinsic motion. The other constraint minimizes the feature divergence of non-eyeblink samples, to suppress motion clues due to head or camera movement, illumination change, etc. Meanwhile, concerning the high ambiguity between eyeblink and non-eyeblink samples, soft sample labels are acquired via self-knowledge distillation to conduct feature learning with finer supervision than the hard ones. The experiments verify that, our proposition is significantly superior to the state-of-the-art ones (i.e., advantage on F1-score over 7%) and with real-time running efficiency. It is also of strong generalization capacity towards constrained conditions. The source code will be released upon acceptance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
星辉的斑斓完成签到 ,获得积分10
4秒前
流星雨完成签到 ,获得积分10
6秒前
十二完成签到 ,获得积分10
6秒前
chuzihang完成签到 ,获得积分10
11秒前
xyzdmmm完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
14秒前
温暖完成签到 ,获得积分10
14秒前
15秒前
16秒前
19秒前
吕圆圆圆啊完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
瓦罐完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
菲菲完成签到 ,获得积分10
33秒前
无私雅柏完成签到 ,获得积分10
33秒前
十二完成签到 ,获得积分0
34秒前
35秒前
AMM完成签到,获得积分10
36秒前
小柴发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
41秒前
43秒前
44秒前
46秒前
大猫不吃鱼完成签到,获得积分10
47秒前
整齐半青完成签到 ,获得积分10
48秒前
48秒前
48秒前
真三完成签到,获得积分10
50秒前
尾巴完成签到 ,获得积分10
52秒前
52秒前
青木完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773369
求助须知:如何正确求助?哪些是违规求助? 5610689
关于积分的说明 15431077
捐赠科研通 4905880
什么是DOI,文献DOI怎么找? 2639921
邀请新用户注册赠送积分活动 1587811
关于科研通互助平台的介绍 1542811