Eyelid’s Intrinsic Motion-Aware Feature Learning for Real-Time Eyeblink Detection in the Wild

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 眼睑 模式识别(心理学) 语言学 医学 哲学 外科
作者
Wenzheng Zeng,Yang Xiao,Guilei Hu,Zhiguo Cao,Sicheng Wei,Zhiwen Fang,Joey Tianyi Zhou,Junsong Yuan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5109-5121 被引量:3
标识
DOI:10.1109/tifs.2023.3301728
摘要

Real-time eyeblink detection in the wild is a recently emerged challenging task that suffers from dramatic variations in face attribute, pose, illumination, camera view and distance, etc. One key issue is to well characterize eyelid's intrinsic motion (i.e., approaching and departure between upper and lower eyelid) robustly, under unconstrained conditions. Towards this, a novel eyelid's intrinsic motion-aware feature learning approach is proposed. Our proposition lies in 3 folds. First, the feature extractor is led to focus on informative eye region adaptively via introducing visual attention in a coarse-to-fine way, to guarantee robustness and fine-grained descriptive ability jointly. Then, 2 constraints are proposed to make feature learning be aware of eyelid's intrinsic motion. Particularly, one concerns the fact that the inter-frame feature divergence within eyeblink processes should be greater than non-eyeblink ones to better reveal eyelid's intrinsic motion. The other constraint minimizes the feature divergence of non-eyeblink samples, to suppress motion clues due to head or camera movement, illumination change, etc. Meanwhile, concerning the high ambiguity between eyeblink and non-eyeblink samples, soft sample labels are acquired via self-knowledge distillation to conduct feature learning with finer supervision than the hard ones. The experiments verify that, our proposition is significantly superior to the state-of-the-art ones (i.e., advantage on F1-score over 7%) and with real-time running efficiency. It is also of strong generalization capacity towards constrained conditions. The source code will be released upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sober完成签到,获得积分10
刚刚
刚刚
mmknnk完成签到,获得积分20
刚刚
cc2064完成签到 ,获得积分10
刚刚
调皮冰旋发布了新的文献求助10
1秒前
西哈哈完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
Orange应助幸福胡萝卜采纳,获得10
1秒前
SHDeathlock完成签到,获得积分10
2秒前
习习发布了新的文献求助100
3秒前
Jolene66完成签到,获得积分10
3秒前
研友_8RlQ2n发布了新的文献求助10
3秒前
4秒前
852应助Pangsj采纳,获得10
4秒前
Song完成签到 ,获得积分10
4秒前
4秒前
5秒前
大胆夜绿发布了新的文献求助10
5秒前
Dr终年完成签到,获得积分10
5秒前
katharsis完成签到,获得积分10
5秒前
Ricardo发布了新的文献求助10
6秒前
歪歪象发布了新的文献求助10
6秒前
zeno123456完成签到,获得积分10
6秒前
陈某某发布了新的文献求助10
6秒前
7秒前
he完成签到,获得积分10
7秒前
7秒前
科研小民工应助忍冬半夏采纳,获得30
7秒前
小马甲应助年华采纳,获得10
7秒前
7秒前
CipherSage应助开放的听枫采纳,获得10
7秒前
Never stall发布了新的文献求助10
7秒前
7秒前
Jolene66发布了新的文献求助10
8秒前
zy完成签到,获得积分10
8秒前
Adzuki0812完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678