Eyelid’s Intrinsic Motion-Aware Feature Learning for Real-Time Eyeblink Detection in the Wild

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 眼睑 模式识别(心理学) 医学 哲学 语言学 外科
作者
Wenzheng Zeng,Yang Xiao,Guilei Hu,Zhiguo Cao,Sicheng Wei,Zhiwen Fang,Joey Tianyi Zhou,Junsong Yuan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5109-5121 被引量:5
标识
DOI:10.1109/tifs.2023.3301728
摘要

Real-time eyeblink detection in the wild is a recently emerged challenging task that suffers from dramatic variations in face attribute, pose, illumination, camera view and distance, etc. One key issue is to well characterize eyelid's intrinsic motion (i.e., approaching and departure between upper and lower eyelid) robustly, under unconstrained conditions. Towards this, a novel eyelid's intrinsic motion-aware feature learning approach is proposed. Our proposition lies in 3 folds. First, the feature extractor is led to focus on informative eye region adaptively via introducing visual attention in a coarse-to-fine way, to guarantee robustness and fine-grained descriptive ability jointly. Then, 2 constraints are proposed to make feature learning be aware of eyelid's intrinsic motion. Particularly, one concerns the fact that the inter-frame feature divergence within eyeblink processes should be greater than non-eyeblink ones to better reveal eyelid's intrinsic motion. The other constraint minimizes the feature divergence of non-eyeblink samples, to suppress motion clues due to head or camera movement, illumination change, etc. Meanwhile, concerning the high ambiguity between eyeblink and non-eyeblink samples, soft sample labels are acquired via self-knowledge distillation to conduct feature learning with finer supervision than the hard ones. The experiments verify that, our proposition is significantly superior to the state-of-the-art ones (i.e., advantage on F1-score over 7%) and with real-time running efficiency. It is also of strong generalization capacity towards constrained conditions. The source code will be released upon acceptance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
彭于晏应助SAF采纳,获得10
刚刚
张培元发布了新的文献求助10
1秒前
情怀应助小吉麻麻采纳,获得10
2秒前
tanbao完成签到,获得积分10
2秒前
任寒松发布了新的文献求助10
3秒前
zuozuo完成签到,获得积分10
4秒前
4秒前
xx完成签到,获得积分10
4秒前
领导范儿应助沉静胜采纳,获得10
4秒前
4秒前
爆米花应助皇甫锾铬采纳,获得10
5秒前
汉堡包应助我www采纳,获得10
5秒前
木子完成签到,获得积分20
5秒前
ZZZ完成签到,获得积分20
5秒前
华仔应助方一斩采纳,获得10
5秒前
6秒前
大个应助抽坎填离采纳,获得10
6秒前
7秒前
7秒前
ding应助rose采纳,获得10
7秒前
7秒前
8秒前
9秒前
无问西东完成签到,获得积分20
9秒前
吕邓宏发布了新的文献求助10
9秒前
9秒前
权权xulu完成签到,获得积分10
10秒前
11秒前
11秒前
尊敬雨灵完成签到,获得积分10
11秒前
Leslie完成签到,获得积分10
12秒前
雷锋发布了新的文献求助10
12秒前
无花果应助流云采纳,获得10
12秒前
香蕉导师发布了新的文献求助10
12秒前
13秒前
tangying8642发布了新的文献求助10
13秒前
ZjieY完成签到,获得积分10
14秒前
云雾落清河关注了科研通微信公众号
14秒前
hjyylab完成签到,获得积分0
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679