Eyelid’s Intrinsic Motion-Aware Feature Learning for Real-Time Eyeblink Detection in the Wild

计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 眼睑 模式识别(心理学) 语言学 医学 哲学 外科
作者
Wenzheng Zeng,Yang Xiao,Guilei Hu,Zhiguo Cao,Sicheng Wei,Zhiwen Fang,Joey Tianyi Zhou,Junsong Yuan
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5109-5121 被引量:3
标识
DOI:10.1109/tifs.2023.3301728
摘要

Real-time eyeblink detection in the wild is a recently emerged challenging task that suffers from dramatic variations in face attribute, pose, illumination, camera view and distance, etc. One key issue is to well characterize eyelid's intrinsic motion (i.e., approaching and departure between upper and lower eyelid) robustly, under unconstrained conditions. Towards this, a novel eyelid's intrinsic motion-aware feature learning approach is proposed. Our proposition lies in 3 folds. First, the feature extractor is led to focus on informative eye region adaptively via introducing visual attention in a coarse-to-fine way, to guarantee robustness and fine-grained descriptive ability jointly. Then, 2 constraints are proposed to make feature learning be aware of eyelid's intrinsic motion. Particularly, one concerns the fact that the inter-frame feature divergence within eyeblink processes should be greater than non-eyeblink ones to better reveal eyelid's intrinsic motion. The other constraint minimizes the feature divergence of non-eyeblink samples, to suppress motion clues due to head or camera movement, illumination change, etc. Meanwhile, concerning the high ambiguity between eyeblink and non-eyeblink samples, soft sample labels are acquired via self-knowledge distillation to conduct feature learning with finer supervision than the hard ones. The experiments verify that, our proposition is significantly superior to the state-of-the-art ones (i.e., advantage on F1-score over 7%) and with real-time running efficiency. It is also of strong generalization capacity towards constrained conditions. The source code will be released upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nz完成签到,获得积分10
刚刚
陌君子筱发布了新的文献求助10
刚刚
白白的鱼发布了新的文献求助10
刚刚
dddd完成签到,获得积分10
1秒前
2秒前
研友_VZG64n完成签到,获得积分10
2秒前
舟孑应助张迪采纳,获得10
3秒前
积极老黑完成签到,获得积分10
3秒前
xococ发布了新的文献求助10
3秒前
棉袄完成签到 ,获得积分10
4秒前
曾经若枫完成签到,获得积分10
4秒前
充电宝应助卡布采纳,获得10
4秒前
4秒前
我淦完成签到 ,获得积分10
4秒前
5秒前
5秒前
就爱吃土豆完成签到,获得积分0
6秒前
6秒前
zwenng完成签到,获得积分10
7秒前
7秒前
7秒前
大蜥蜴完成签到,获得积分10
7秒前
8秒前
石榴石发布了新的文献求助10
8秒前
52Hz完成签到,获得积分10
9秒前
墨aizhan发布了新的文献求助10
9秒前
张一二二二完成签到,获得积分20
9秒前
9秒前
云烟完成签到,获得积分10
9秒前
mervin发布了新的文献求助10
10秒前
sownpluitat完成签到 ,获得积分10
10秒前
LGF发布了新的文献求助10
11秒前
jing发布了新的文献求助30
12秒前
12秒前
zongzi12138完成签到,获得积分0
12秒前
AnYijing发布了新的文献求助30
12秒前
mhl11应助小星星采纳,获得10
12秒前
13秒前
合适洙完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257400
求助须知:如何正确求助?哪些是违规求助? 2899333
关于积分的说明 8305202
捐赠科研通 2568637
什么是DOI,文献DOI怎么找? 1395187
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630755