Lithium battery model parameter identification based on the GA-LM algorithm

Levenberg-Marquardt算法 算法 电压 均方误差 遗传算法 电池(电) 非线性系统 功率(物理) 计算机科学 控制理论(社会学) 数学 数学优化 工程类 统计 人工神经网络 电气工程 人工智能 物理 量子力学 控制(管理)
作者
Jinhui Zhao,Xinling Qian,Bing Jiang,Biao Wang
出处
期刊:International Journal of Green Energy [Taylor & Francis]
卷期号:21 (5): 1147-1160 被引量:3
标识
DOI:10.1080/15435075.2023.2242926
摘要

ABSTRACTThe accuracy of lithium battery model parameters is the key to lithium battery state estimation. The offline parameter identification method for lithium batteries requires the nonlinear fitting of the voltage rebound curve of the hybrid pulse discharge experiment. The genetic algorithm has a strong global search ability, but it is easy to fall into local solutions. The Levenberg-Marquardt algorithm has a strong local optimization ability, but the algorithm cannot converge when the prior value is unknown. Given the above problems, this paper proposes a parameter identification method based on the Genetic-Levenberg-Marquardt (GA-LM) algorithm, which takes the sum of the squared model voltage errors as the objective function, and predicts the initial value of the parameter vector through the GA, providing the LM algorithm with prior value. In the case of unknown prior values, the GA-LM algorithm can achieve high-precision nonlinear optimization. Finally, the simulation test under the conditions of constant current discharge and hybrid pulse power discharge. The mean absolute error, mean relative error, and root mean square error of the model voltage in the two working conditions are 7.23 mV, 0.20%, 9.61 mV, and 13.37 mV, 0.37%, 15.44 mV, which shows that the algorithm has high accuracy.KEYWORDS: Lithium batteriessecond-order RC modelparameter identificationgenetic algorithm (GA)Levenberg-Marquardt (LM) algorithm AcknowledgementsThis study is supported by the Chinese Academy of Engineering's Promoting Energy Production and Consumption Revolution (2035, Phase III) Strategic Research Subtopic Six Energy Revolution Promoting the Rise of the Central Region Project (2018-ZD-06), China. J.Z., X.Q., B.J., and B.W. would like to thank the CALCE battery group that provided the battery test data (https://web.calce.umd.edu/batteries/data.htm).Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementResearch data are not shared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助凌惠娟采纳,获得10
刚刚
大模型应助罗婉婷采纳,获得10
刚刚
Cactus应助王某明采纳,获得10
1秒前
田様应助雪雪儿采纳,获得10
1秒前
Frank发布了新的文献求助10
2秒前
2秒前
无花果应助轻松的万恶采纳,获得10
2秒前
3秒前
www发布了新的文献求助10
3秒前
研友_VZG64n发布了新的文献求助10
4秒前
4秒前
光光完成签到,获得积分10
5秒前
slp123456完成签到,获得积分20
5秒前
6秒前
1234发布了新的文献求助10
6秒前
无花果应助一鸣采纳,获得10
7秒前
7秒前
8秒前
时米米米发布了新的文献求助10
8秒前
大模型应助xinying采纳,获得10
8秒前
9秒前
9秒前
陌生完成签到 ,获得积分10
10秒前
领导范儿应助淡然的夜柳采纳,获得10
10秒前
11秒前
14秒前
JamesPei应助1234645678采纳,获得10
15秒前
15秒前
小二郎应助小盼虫采纳,获得10
15秒前
15秒前
16秒前
ttm发布了新的文献求助30
16秒前
蜡笔完成签到,获得积分10
17秒前
大个应助邹鹏采纳,获得10
17秒前
17秒前
18秒前
机智雪糕发布了新的文献求助20
19秒前
mnliao完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788