Lithium battery model parameter identification based on the GA-LM algorithm

Levenberg-Marquardt算法 算法 电压 均方误差 遗传算法 电池(电) 非线性系统 功率(物理) 计算机科学 控制理论(社会学) 数学 数学优化 工程类 统计 人工神经网络 电气工程 人工智能 物理 量子力学 控制(管理)
作者
Jinhui Zhao,Xinling Qian,Bing Jiang,Biao Wang
出处
期刊:International Journal of Green Energy [Taylor & Francis]
卷期号:21 (5): 1147-1160 被引量:3
标识
DOI:10.1080/15435075.2023.2242926
摘要

ABSTRACTThe accuracy of lithium battery model parameters is the key to lithium battery state estimation. The offline parameter identification method for lithium batteries requires the nonlinear fitting of the voltage rebound curve of the hybrid pulse discharge experiment. The genetic algorithm has a strong global search ability, but it is easy to fall into local solutions. The Levenberg-Marquardt algorithm has a strong local optimization ability, but the algorithm cannot converge when the prior value is unknown. Given the above problems, this paper proposes a parameter identification method based on the Genetic-Levenberg-Marquardt (GA-LM) algorithm, which takes the sum of the squared model voltage errors as the objective function, and predicts the initial value of the parameter vector through the GA, providing the LM algorithm with prior value. In the case of unknown prior values, the GA-LM algorithm can achieve high-precision nonlinear optimization. Finally, the simulation test under the conditions of constant current discharge and hybrid pulse power discharge. The mean absolute error, mean relative error, and root mean square error of the model voltage in the two working conditions are 7.23 mV, 0.20%, 9.61 mV, and 13.37 mV, 0.37%, 15.44 mV, which shows that the algorithm has high accuracy.KEYWORDS: Lithium batteriessecond-order RC modelparameter identificationgenetic algorithm (GA)Levenberg-Marquardt (LM) algorithm AcknowledgementsThis study is supported by the Chinese Academy of Engineering's Promoting Energy Production and Consumption Revolution (2035, Phase III) Strategic Research Subtopic Six Energy Revolution Promoting the Rise of the Central Region Project (2018-ZD-06), China. J.Z., X.Q., B.J., and B.W. would like to thank the CALCE battery group that provided the battery test data (https://web.calce.umd.edu/batteries/data.htm).Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementResearch data are not shared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干饭虫应助阿宝采纳,获得10
1秒前
文静青梦发布了新的文献求助10
1秒前
一叶知秋应助SYSUer采纳,获得10
1秒前
文献互助发布了新的文献求助10
2秒前
will发布了新的文献求助10
3秒前
4秒前
xxl完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
江江发布了新的文献求助10
7秒前
小丽完成签到,获得积分10
8秒前
Lucas应助Winter采纳,获得10
8秒前
阿晨发布了新的文献求助10
8秒前
JamesPei应助文静青梦采纳,获得10
9秒前
9秒前
陈业伟发布了新的文献求助10
10秒前
小白白发布了新的文献求助10
10秒前
所所应助嗨波采纳,获得10
11秒前
超级的丹琴完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
浮游应助liuhanchi采纳,获得10
15秒前
我是老大应助liuhanchi采纳,获得10
15秒前
16秒前
传奇3应助小白白采纳,获得10
16秒前
17秒前
科研通AI6应助优雅草莓采纳,获得10
18秒前
琪琪发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237