Development and validation of a CT-based deep learning algorithm to augment non-invasive diagnosis of idiopathic pulmonary fibrosis

医学 算法 特发性肺纤维化 寻常性间质性肺炎 间质性肺病 接收机工作特性 放射科 卷积神经网络 队列 曲线下面积 人工智能 机器学习 病理 内科学 计算机科学
作者
Manoj V. Maddali,Angad Kalra,Michael Muelly,Joshua J. Reicher
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:219: 107428-107428 被引量:8
标识
DOI:10.1016/j.rmed.2023.107428
摘要

Rationale Non-invasive diagnosis of idiopathic pulmonary fibrosis (IPF) involves identification of usual interstitial pneumonia (UIP) pattern by computed tomography (CT) and exclusion of other known etiologies of interstitial lung disease (ILD). However, uncertainty in identification of radiologic UIP pattern leads to the continued need for invasive surgical biopsy. We thus developed and validated a machine learning algorithm using CT scans alone to augment non-invasive diagnosis of IPF. Methods The primary algorithm was a deep learning convolutional neural network (CNN) with model inputs of CT images only. The algorithm was trained to predict IPF among cases of ILD, with reference standard of multidisciplinary discussion (MDD) consensus diagnosis. The algorithm was trained using a multi-center dataset of more than 2000 cases of ILD. A US-based multi-site cohort (n = 295) was used for algorithm tuning, and external validation was performed with a separate dataset (n = 295) from European and South American sources. Results In the tuning set, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.87 (CI: 0.83–0.92) in differentiating IPF from other ILDs. Sensitivity and specificity were 0.67 (0.57–0.76) and 0.90 (0.83–0.95), respectively. By contrast, pre-recorded assessment prior to MDD diagnosis had sensitivity of 0.31 (0.23–0.42) and specificity of 0.92 (0.87–0.95). In the external test set, c-statistic was also 0.87 (0.83–0.91). Model performance was consistent across a variety of CT scanner manufacturers and slice thickness. Conclusion The presented deep learning algorithm demonstrated consistent performance in identifying IPF among cases of ILD using CT images alone and suggests generalization across CT manufacturers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_GZbV4Z发布了新的文献求助30
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
Hello应助shenna采纳,获得30
4秒前
黄金灼发布了新的文献求助10
4秒前
稳重的玫瑰完成签到,获得积分20
4秒前
livra1058给livra1058的求助进行了留言
4秒前
田様应助iui飞采纳,获得10
4秒前
风中元风完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研狗不理采纳,获得50
5秒前
5秒前
所所应助科研通管家采纳,获得10
6秒前
cocolu应助科研通管家采纳,获得20
6秒前
gu完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
Riley发布了新的文献求助10
7秒前
风中元风发布了新的文献求助10
8秒前
香蕉觅云应助1234采纳,获得10
8秒前
高宫璇发布了新的文献求助10
8秒前
哒哒发布了新的文献求助10
9秒前
longyuyan完成签到,获得积分10
9秒前
香蕉觅云应助执着的怜寒采纳,获得10
10秒前
Ava应助FY采纳,获得10
10秒前
一丢丢发布了新的文献求助10
10秒前
10秒前
善学以致用应助Hammerdai采纳,获得10
10秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444222
求助须知:如何正确求助?哪些是违规求助? 3040268
关于积分的说明 8980686
捐赠科研通 2728913
什么是DOI,文献DOI怎么找? 1496761
科研通“疑难数据库(出版商)”最低求助积分说明 691858
邀请新用户注册赠送积分活动 689393