A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria

可微函数 路径(计算) 纳什均衡 数学优化 数理经济学 随机博弈 计算机科学 一般均衡理论 数学 应用数学 经济 数学分析 微观经济学 程序设计语言
作者
Yiyin Cao,Yin Chen,Chuangyin Dang
出处
期刊:Informs Journal on Computing 卷期号:36 (2): 377-396
标识
DOI:10.1287/ijoc.2022.0148
摘要

The concept of proper equilibrium was established as a strict refinement of perfect equilibrium. This establishment has significantly advanced the development of game theory and its applications. Nonetheless, it remains a challenging problem to compute such an equilibrium. This paper develops a differentiable path-following method with a compact formulation to compute a proper equilibrium. The method incorporates square-root-barrier terms into payoff functions with an extra variable and constitutes a square-root-barrier game. As a result of this barrier game, we acquire a smooth path to a proper equilibrium. To further reduce the computational burden, we present a compact formulation of an ε-proper equilibrium with a polynomial number of variables and equations. Numerical results show that the differentiable path-following method is numerically stable and efficient. Moreover, by relaxing the requirements of proper equilibrium and imposing Selten’s perfection, we come up with the notion of perfect d-proper equilibrium, which approximates a proper equilibrium and is less costly to compute. Numerical examples demonstrate that even when d is rather large, a perfect d-proper equilibrium remains to be a proper equilibrium. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms-Continuous. Funding: This work was partially supported by General Research Fund (GRF) CityU 11306821 of Hong Kong SAR Government. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0148 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0148 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贤惠的豌豆完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
开心的小熊猫完成签到,获得积分10
3秒前
4秒前
lucky发布了新的文献求助10
5秒前
巫马谷南发布了新的文献求助10
5秒前
行7发布了新的文献求助10
5秒前
大劲发布了新的文献求助10
5秒前
6秒前
FashionBoy应助难过山菡采纳,获得10
6秒前
6秒前
7秒前
FashionBoy应助lisa采纳,获得10
7秒前
8秒前
抹茶冰淇淋完成签到 ,获得积分10
8秒前
科研通AI6.1应助lab采纳,获得10
8秒前
9秒前
城北徐公完成签到,获得积分10
10秒前
Orange应助胡萝卜采纳,获得10
10秒前
10秒前
稳重的若雁完成签到,获得积分10
10秒前
大劲完成签到,获得积分10
11秒前
222发布了新的文献求助10
12秒前
12秒前
wwy完成签到,获得积分10
12秒前
13秒前
猴王完成签到,获得积分10
13秒前
全解哈哈哈完成签到,获得积分10
13秒前
13秒前
可爱的函函应助打工肥仔采纳,获得50
14秒前
bo发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
Owen应助weiwei采纳,获得10
14秒前
15秒前
15秒前
butaishao完成签到,获得积分10
16秒前
小闰土发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826129
求助须知:如何正确求助?哪些是违规求助? 6013880
关于积分的说明 15568551
捐赠科研通 4946464
什么是DOI,文献DOI怎么找? 2664827
邀请新用户注册赠送积分活动 1610600
关于科研通互助平台的介绍 1565595