Advances in high entropy doping of Li7La3Zr2O12 (LLZO) garnet solid electrolyte: Properties and feasibility analysis

电解质 兴奋剂 离子电导率 快离子导体 离子 电导率 材料科学 熵(时间箭头) 离子键合 工程物理 热力学 化学物理 纳米技术 矿物学 计算机科学 化学 物理化学 物理 光电子学 电极 有机化学
作者
X.A. Mei
标识
DOI:10.54254/2755-2721/23/20230619
摘要

It is discovered that solid electrolytes have a lower ionic conductivity than liquid electrolytes. Such situations have drawn significant attention in the scientific fields, and various practical solutions have been devised to address them. Doping is frequently employed to increase ionic conductivity to address the intrinsic flaws in solid electrolytes. Most recently, introducing a high-entropy appliance to the doping in the Li7La3Zr2O12(LLZO) garnet structure was considered to be a novel method for the performance enhancement of solid electrolytes. This paper reviewed the state-of-the-art research in the field of high-entropy solid electrolytes. The basic structure of LLZO and migration ways of Li-ions were discussed in detail. The latest approaches involving the use of high-entropy doping were introduced. In addition, the working mechanisms of the high-entropy appliance to improve the ionic conductivity were discussed. Special attention was paid to the practical high-entropy doping system. The effects of structure distortion on the ionic conductive properties such as the site energy overlapping were assessed. Finally, the outlook of the development of high-entropy doping systems was discussed. It can be concluded that all future problems related to atomic and ion diffusion can be started from this result and discussed in the next step.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细心沛山完成签到,获得积分10
刚刚
刘培恒完成签到,获得积分10
刚刚
刚刚
Linson发布了新的文献求助10
1秒前
CodeCraft应助伶俐乌采纳,获得10
1秒前
共享精神应助张可采纳,获得10
1秒前
乐乐应助愤怒的夜绿采纳,获得10
2秒前
2秒前
3秒前
3秒前
inn完成签到,获得积分10
3秒前
Ava应助十年负一生采纳,获得10
3秒前
卞旭东完成签到,获得积分10
3秒前
汐尘完成签到,获得积分10
4秒前
4秒前
MM发布了新的文献求助10
4秒前
687发布了新的文献求助10
4秒前
甜味白开水完成签到,获得积分10
4秒前
4秒前
星云龙完成签到,获得积分10
5秒前
海洋不快乐完成签到,获得积分10
6秒前
千寒完成签到,获得积分10
6秒前
Twilight发布了新的文献求助10
7秒前
NexusExplorer应助bodao采纳,获得10
7秒前
想发paper的金鱼完成签到,获得积分10
7秒前
浮华完成签到,获得积分10
7秒前
李子昂完成签到,获得积分10
7秒前
四羟基合铝酸钾完成签到,获得积分10
7秒前
8秒前
hhh完成签到 ,获得积分10
8秒前
可爱飞荷发布了新的文献求助10
9秒前
peanut发布了新的文献求助10
10秒前
10秒前
科研狗完成签到,获得积分10
10秒前
科小研发布了新的文献求助30
10秒前
1111发布了新的文献求助10
10秒前
完美焦完成签到,获得积分10
10秒前
SciGPT应助小王同学采纳,获得10
11秒前
寡妇哥完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645662
求助须知:如何正确求助?哪些是违规求助? 4769440
关于积分的说明 15031321
捐赠科研通 4804378
什么是DOI,文献DOI怎么找? 2568968
邀请新用户注册赠送积分活动 1526089
关于科研通互助平台的介绍 1485700