已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Memory Optimization in RNN-Based Full Waveform Inversion Using Boundary Saving Wavefield Reconstruction

计算机科学 反向传播 循环神经网络 内存占用 反演(地质) 计算 图形 瓶颈 算法 人工神经网络 人工智能 理论计算机科学 古生物学 构造盆地 生物 嵌入式系统 操作系统
作者
Shaowen Wang,Yong Jiang,Peng Song,Jun Tan,Zhaolun Liu,Bingshou He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2023.3317529
摘要

In wave equation modeling, wavefields propagating over time can be regarded as feedforward in a recurrent neural network. Therefore, the seismic inversion problem based on partial differential wave equations can be addressed using automatic differentiation in the state-of-art deep learning frameworks, eliminating the need for explicit backpropagating the residual wavefield. However, one challenge that arises in the context of automatic differentiation is the significant memory usage due to the necessity of storing the hidden states of the RNN (i.e., wavefields in seismic modeling) during forward computation for constructing the computational graph and computing the derivatives during backpropagation. This memory overhead can become a bottleneck, particularly when dealing with large-scale inversion problems. To mitigate this issue, we propose an effective boundary saving strategy that allows for the reconstruction of the computational graph during the backpropagation process. Instead of storing all the intermediate wavefields at each time step, we selectively save the necessary information at the boundaries, thereby significantly reducing the memory footprint. This approach enables us to maintain the convenience and efficiency of automatic differentiation computations while minimizing the memory requirements. Both 2D and 3D numerical experiments validate the accurate reconstruction of wavefields with minimal loss in precision, while the computational graph is simultaneously reconstructed. Consequently, the gradients can also be calculated correctly by automatic differentiation with minimal CPU/GPU memory occupation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要元灵完成签到 ,获得积分10
1秒前
Asuka完成签到 ,获得积分10
2秒前
w_tiger完成签到 ,获得积分10
2秒前
paofu泡芙发布了新的文献求助10
4秒前
叶志涛完成签到 ,获得积分10
6秒前
8秒前
8秒前
junkook完成签到 ,获得积分10
8秒前
10秒前
学者风范完成签到 ,获得积分10
11秒前
13秒前
zeice完成签到 ,获得积分10
15秒前
xl发布了新的文献求助10
15秒前
li发布了新的文献求助10
17秒前
18秒前
老狗子完成签到,获得积分10
21秒前
谦让凌兰发布了新的文献求助10
21秒前
pluto应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
VDC应助科研通管家采纳,获得30
22秒前
YifanWang应助科研通管家采纳,获得30
22秒前
pluto应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
YifanWang应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
YifanWang应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
科研通AI5应助xl采纳,获得10
23秒前
如意数据线完成签到 ,获得积分10
25秒前
鳗鱼依白完成签到,获得积分10
27秒前
闵凝竹完成签到 ,获得积分0
27秒前
28秒前
29秒前
emmm完成签到 ,获得积分10
29秒前
二行完成签到 ,获得积分10
29秒前
CHSLN完成签到 ,获得积分10
31秒前
共享精神应助鳗鱼依白采纳,获得10
33秒前
27完成签到 ,获得积分10
35秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590534
求助须知:如何正确求助?哪些是违规求助? 3158829
关于积分的说明 9521685
捐赠科研通 2861808
什么是DOI,文献DOI怎么找? 1572818
邀请新用户注册赠送积分活动 738252
科研通“疑难数据库(出版商)”最低求助积分说明 722714