ARISE: Graph Anomaly Detection on Attributed Networks via Substructure Awareness

异常检测 下部结构 图形 计算机科学 拓扑(电路) 节点(物理) 异常(物理) 数据挖掘 水准点(测量) 网络拓扑 相似性(几何) 理论计算机科学 模式识别(心理学) 人工智能 数学 地理 物理 组合数学 工程类 计算机网络 图像(数学) 结构工程 大地测量学 量子力学 凝聚态物理
作者
Jingcan Duan,Bin Xiao,Siwei Wang,Haifang Zhou,Xinwang Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tnnls.2023.3312655
摘要

Recently, graph anomaly detection on attributed networks has attracted growing attention in data mining and machine learning communities. Apart from attribute anomalies, graph anomaly detection also aims at suspicious topological-abnormal nodes that exhibit collective anomalous behavior. Closely connected uncorrelated node groups form uncommonly dense substructures in the network. However, existing methods overlook that the topology anomaly detection performance can be improved by recognizing such a collective pattern. To this end, we propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE). Unlike previous algorithms, we focus on the substructures in the graph to discern abnormalities. Specifically, we establish a region proposal module to discover high-density substructures in the network as suspicious regions. The average node-pair similarity can be regarded as the topology anomaly degree of nodes within substructures. Generally, the lower the similarity, the higher the probability that internal nodes are topology anomalies. To distill better embeddings of node attributes, we further introduce a graph contrastive learning scheme, which observes attribute anomalies in the meantime. In this way, ARISE can detect both topology and attribute anomalies. Ultimately, extensive experiments on benchmark datasets show that ARISE greatly improves detection performance (up to 7.30% AUC and 17.46% AUPRC gains) compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chaiyuan完成签到 ,获得积分10
刚刚
刚刚
NexusExplorer应助能干戒指采纳,获得10
刚刚
小二郎应助Ronnie采纳,获得10
刚刚
桐桐应助miao采纳,获得10
1秒前
虎帅发布了新的文献求助10
1秒前
Sulfur完成签到,获得积分10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
小丫完成签到,获得积分20
3秒前
3秒前
夏天发布了新的文献求助10
3秒前
3秒前
yhy完成签到,获得积分10
4秒前
SYLH应助科研狗采纳,获得10
4秒前
谢朝邦发布了新的文献求助30
5秒前
追寻的问玉完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
咿咿呀呀发布了新的文献求助10
6秒前
6秒前
Erdong_chen应助小乐比采纳,获得10
7秒前
滴滴滴发布了新的文献求助10
7秒前
Helio完成签到,获得积分10
7秒前
丘比特应助Sunday采纳,获得10
8秒前
8秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993