Machine learning to predict in-hospital outcomes in patients with acute heart failure

医学 逻辑回归 过度拟合 心力衰竭 接收机工作特性 Lasso(编程语言) 急诊医学 重症监护医学 前瞻性队列研究 心源性休克 内科学 机器学习 心肌梗塞 人工神经网络 万维网 计算机科学
作者
B. Sibilia,Solenn Toupin,Jean‐Guillaume Dillinger,J.B. Brette,A Ramonatxo,Guillaume Schurtz,Khalil Hamzi,Antonin Trimaille,Nouha Bouali,Nicolas Piliero,Damien Logeart,S. Andrieu,Fabien Picard,Patrick Henry,Théo Pezel
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1102
摘要

Abstract Background Acute heart failure (AHF) is a leading cause of mortality worldwide and a major public health issue with a still high rate of in-hospital outcomes. Physicians need more investigations and new tools to prevent those high-risk patients from major adverse events (MAE). While few scores are available for risk stratification of patients hospitalized for AHF using traditional statistical methods, the potential benefit of machine-learning (ML) is not established. Purpose To investigate the feasibility and accuracy of a machine-learning (ML) model using clinical, biological and echocardiographic data to predict in-hospital MAE in patients hospitalized for AHF and compare its performance with traditional models and existing scores. Methods The study cohort consists of consecutive patients admitted for AHF included in the French nationwide, multicenter, prospective, ADDICTO-USIC study involving 39 centers from 7 to 22 April 2021. Traditional clinical, biological, electrocardiographic and echographic data as well as a standardized exhaled carbon monoxide (CO) measurement and the presence of illicit drugs determined through an urine drug assay were recorded. Three ML models were developed using clinical and echocardiographic parameters to predict in-hospital MAE, including death, resuscitated cardiac arrest or cardiogenic shock requiring medical or mechanical hemodynamic support. Least absolute shrinkage and selection operator (LASSO) regression was used to select variables and prevent model overfitting. The ML models (LASSO, random forest and XGBoost) were then trained on 70% of patients and evaluated on the other 30% as internal validation. Their performance was compared against standard logistic regression model, using receiver operating characteristics (ROC) and precision-recall (PR) curves and area-under-the curves (AUC). Results Among 459 consecutive patients included (age 68±14 years, 68% male), 47 had in-hospital MAE (9.8%). Out of 28 clinical, biological, ECG, and echocardiographic variables, seven were selected as being the most important in predicting MAE in the training set (N=322): mean arterial pressure (MAP), ischemic cardiomyopathy etiology, sub-aortic velocity time integral (VTI), E/e’, tricuspid annular plane systolic excursion (TAPSE), illicit drugs and Carbon monoxide. The random forest model showed the best performance compared with the other ML models (AUROC=0.82, PR-AUC=0.48, F1 score=0.56). Our ML-score exhibited a higher AUC compared with an existing score for prediction of MAE (AUROC for ML score: 0.82 vs Acute HF-score: all p<0.001). Conclusions The random forest ML-model including seven clinical and echocardiographic variables, including carbon monoxide level and illicit drugs use, exhibited a better performance than traditional statistical methods or existing scores to predict in-hospital outcomes in patients admitted for AHF.Feature selection by LASSOPerformances of ML models on test set
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianzml0举报木木啊求助涉嫌违规
刚刚
aaa完成签到,获得积分10
2秒前
wahaha完成签到,获得积分10
3秒前
几酌给nixx的求助进行了留言
6秒前
ntrip完成签到,获得积分10
7秒前
7秒前
炸鸡完成签到,获得积分10
10秒前
yyyy发布了新的文献求助50
11秒前
大尧子完成签到 ,获得积分10
12秒前
tivyg'lk完成签到,获得积分10
12秒前
白日幻想家完成签到 ,获得积分10
13秒前
慌慌完成签到 ,获得积分10
13秒前
第八号当铺完成签到,获得积分10
14秒前
beizn1214发布了新的文献求助10
16秒前
情怀应助huangr123采纳,获得80
16秒前
祗想静静嘚完成签到 ,获得积分10
17秒前
追风少年完成签到,获得积分10
19秒前
鲤鱼怀绿完成签到,获得积分10
20秒前
山茶发布了新的文献求助10
22秒前
毕节发布了新的文献求助10
23秒前
23秒前
王ml发布了新的文献求助10
23秒前
伶俐板栗完成签到,获得积分10
24秒前
25秒前
29秒前
Erich发布了新的文献求助10
30秒前
爆米花应助nil采纳,获得10
30秒前
30秒前
陈嘻嘻嘻嘻完成签到,获得积分10
32秒前
Godyo发布了新的文献求助10
34秒前
34秒前
年轻采波完成签到,获得积分10
35秒前
xiaoxie完成签到 ,获得积分10
36秒前
36秒前
37秒前
Jay完成签到,获得积分10
37秒前
HUSHIYI完成签到,获得积分10
37秒前
骑羊发布了新的文献求助20
39秒前
科研通AI2S应助大白采纳,获得10
42秒前
阳光友蕊完成签到 ,获得积分10
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175