Machine learning to predict in-hospital outcomes in patients with acute heart failure

医学 逻辑回归 过度拟合 心力衰竭 接收机工作特性 Lasso(编程语言) 急诊医学 重症监护医学 前瞻性队列研究 心源性休克 内科学 机器学习 心肌梗塞 人工神经网络 万维网 计算机科学
作者
B. Sibilia,Solenn Toupin,Jean‐Guillaume Dillinger,J.B. Brette,A Ramonatxo,Guillaume Schurtz,Khalil Hamzi,Antonin Trimaille,Nouha Bouali,Nicolas Piliero,Damien Logeart,S. Andrieu,Fabien Picard,Patrick Henry,Théo Pezel
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1102
摘要

Abstract Background Acute heart failure (AHF) is a leading cause of mortality worldwide and a major public health issue with a still high rate of in-hospital outcomes. Physicians need more investigations and new tools to prevent those high-risk patients from major adverse events (MAE). While few scores are available for risk stratification of patients hospitalized for AHF using traditional statistical methods, the potential benefit of machine-learning (ML) is not established. Purpose To investigate the feasibility and accuracy of a machine-learning (ML) model using clinical, biological and echocardiographic data to predict in-hospital MAE in patients hospitalized for AHF and compare its performance with traditional models and existing scores. Methods The study cohort consists of consecutive patients admitted for AHF included in the French nationwide, multicenter, prospective, ADDICTO-USIC study involving 39 centers from 7 to 22 April 2021. Traditional clinical, biological, electrocardiographic and echographic data as well as a standardized exhaled carbon monoxide (CO) measurement and the presence of illicit drugs determined through an urine drug assay were recorded. Three ML models were developed using clinical and echocardiographic parameters to predict in-hospital MAE, including death, resuscitated cardiac arrest or cardiogenic shock requiring medical or mechanical hemodynamic support. Least absolute shrinkage and selection operator (LASSO) regression was used to select variables and prevent model overfitting. The ML models (LASSO, random forest and XGBoost) were then trained on 70% of patients and evaluated on the other 30% as internal validation. Their performance was compared against standard logistic regression model, using receiver operating characteristics (ROC) and precision-recall (PR) curves and area-under-the curves (AUC). Results Among 459 consecutive patients included (age 68±14 years, 68% male), 47 had in-hospital MAE (9.8%). Out of 28 clinical, biological, ECG, and echocardiographic variables, seven were selected as being the most important in predicting MAE in the training set (N=322): mean arterial pressure (MAP), ischemic cardiomyopathy etiology, sub-aortic velocity time integral (VTI), E/e’, tricuspid annular plane systolic excursion (TAPSE), illicit drugs and Carbon monoxide. The random forest model showed the best performance compared with the other ML models (AUROC=0.82, PR-AUC=0.48, F1 score=0.56). Our ML-score exhibited a higher AUC compared with an existing score for prediction of MAE (AUROC for ML score: 0.82 vs Acute HF-score: all p<0.001). Conclusions The random forest ML-model including seven clinical and echocardiographic variables, including carbon monoxide level and illicit drugs use, exhibited a better performance than traditional statistical methods or existing scores to predict in-hospital outcomes in patients admitted for AHF.Feature selection by LASSOPerformances of ML models on test set

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助guyerr采纳,获得10
1秒前
2秒前
2秒前
陳嘻嘻完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
零下一秒完成签到,获得积分10
3秒前
Regulus完成签到,获得积分10
3秒前
3秒前
wwc完成签到,获得积分10
3秒前
4秒前
6秒前
OGB发布了新的文献求助60
6秒前
健忘石头完成签到,获得积分10
7秒前
Lucy发布了新的文献求助10
8秒前
9秒前
9秒前
jiemo_111完成签到 ,获得积分10
9秒前
大聪明发布了新的文献求助10
9秒前
木木三发布了新的文献求助20
9秒前
9秒前
领导范儿应助andrew采纳,获得10
10秒前
11秒前
yae完成签到,获得积分0
11秒前
斯文败类应助tangrzh采纳,获得30
12秒前
JamesPei应助Jeffwgx采纳,获得10
12秒前
斯文败类应助科研小孟采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
zcx完成签到,获得积分10
14秒前
14秒前
destiny发布了新的文献求助10
15秒前
zhhr完成签到,获得积分10
15秒前
隐形路灯完成签到 ,获得积分10
15秒前
陈珂发布了新的文献求助10
16秒前
柠檬泡芙发布了新的文献求助20
16秒前
aiya完成签到,获得积分10
16秒前
cc完成签到 ,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753366
求助须知:如何正确求助?哪些是违规求助? 5480076
关于积分的说明 15377586
捐赠科研通 4892244
什么是DOI,文献DOI怎么找? 2631010
邀请新用户注册赠送积分活动 1579146
关于科研通互助平台的介绍 1534955