Machine learning to predict in-hospital outcomes in patients with acute heart failure

医学 逻辑回归 过度拟合 心力衰竭 接收机工作特性 Lasso(编程语言) 急诊医学 重症监护医学 前瞻性队列研究 心源性休克 内科学 机器学习 心肌梗塞 人工神经网络 万维网 计算机科学
作者
B. Sibilia,Solenn Toupin,Jean‐Guillaume Dillinger,J.B. Brette,A Ramonatxo,Guillaume Schurtz,Khalil Hamzi,Antonin Trimaille,Nouha Bouali,Nicolas Piliero,Damien Logeart,S. Andrieu,Fabien Picard,Patrick Henry,Théo Pezel
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1102
摘要

Abstract Background Acute heart failure (AHF) is a leading cause of mortality worldwide and a major public health issue with a still high rate of in-hospital outcomes. Physicians need more investigations and new tools to prevent those high-risk patients from major adverse events (MAE). While few scores are available for risk stratification of patients hospitalized for AHF using traditional statistical methods, the potential benefit of machine-learning (ML) is not established. Purpose To investigate the feasibility and accuracy of a machine-learning (ML) model using clinical, biological and echocardiographic data to predict in-hospital MAE in patients hospitalized for AHF and compare its performance with traditional models and existing scores. Methods The study cohort consists of consecutive patients admitted for AHF included in the French nationwide, multicenter, prospective, ADDICTO-USIC study involving 39 centers from 7 to 22 April 2021. Traditional clinical, biological, electrocardiographic and echographic data as well as a standardized exhaled carbon monoxide (CO) measurement and the presence of illicit drugs determined through an urine drug assay were recorded. Three ML models were developed using clinical and echocardiographic parameters to predict in-hospital MAE, including death, resuscitated cardiac arrest or cardiogenic shock requiring medical or mechanical hemodynamic support. Least absolute shrinkage and selection operator (LASSO) regression was used to select variables and prevent model overfitting. The ML models (LASSO, random forest and XGBoost) were then trained on 70% of patients and evaluated on the other 30% as internal validation. Their performance was compared against standard logistic regression model, using receiver operating characteristics (ROC) and precision-recall (PR) curves and area-under-the curves (AUC). Results Among 459 consecutive patients included (age 68±14 years, 68% male), 47 had in-hospital MAE (9.8%). Out of 28 clinical, biological, ECG, and echocardiographic variables, seven were selected as being the most important in predicting MAE in the training set (N=322): mean arterial pressure (MAP), ischemic cardiomyopathy etiology, sub-aortic velocity time integral (VTI), E/e’, tricuspid annular plane systolic excursion (TAPSE), illicit drugs and Carbon monoxide. The random forest model showed the best performance compared with the other ML models (AUROC=0.82, PR-AUC=0.48, F1 score=0.56). Our ML-score exhibited a higher AUC compared with an existing score for prediction of MAE (AUROC for ML score: 0.82 vs Acute HF-score: all p<0.001). Conclusions The random forest ML-model including seven clinical and echocardiographic variables, including carbon monoxide level and illicit drugs use, exhibited a better performance than traditional statistical methods or existing scores to predict in-hospital outcomes in patients admitted for AHF.Feature selection by LASSOPerformances of ML models on test set

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助CAIMM采纳,获得10
1秒前
1秒前
科研通AI6应助贪玩笑容采纳,获得10
1秒前
2秒前
2秒前
Pudding发布了新的文献求助10
3秒前
3秒前
求索发布了新的文献求助10
3秒前
Optimistic发布了新的文献求助10
3秒前
yeye完成签到,获得积分10
3秒前
隐形曼青应助山水之乐采纳,获得10
4秒前
He完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
wangchong发布了新的文献求助10
5秒前
5秒前
6秒前
元素分希怡完成签到,获得积分10
6秒前
6秒前
渔夫应助TIAn采纳,获得10
6秒前
6秒前
9秒前
Akim应助lu2025采纳,获得10
9秒前
9秒前
瘦瘦的柏柳完成签到,获得积分10
9秒前
An发布了新的文献求助10
9秒前
NexusExplorer应助猫好好采纳,获得10
11秒前
11秒前
北冰洋的夜晚An完成签到,获得积分10
12秒前
充电宝应助榴莲柿子茶采纳,获得10
12秒前
Jasmine发布了新的文献求助10
12秒前
求索完成签到,获得积分10
14秒前
sun完成签到 ,获得积分10
14秒前
14秒前
14秒前
叶子完成签到,获得积分10
15秒前
shuaige发布了新的文献求助10
15秒前
脑洞疼应助wangchong采纳,获得10
16秒前
17秒前
wanci应助yyl采纳,获得10
17秒前
夕夜完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655668
求助须知:如何正确求助?哪些是违规求助? 4799897
关于积分的说明 15073450
捐赠科研通 4814035
什么是DOI,文献DOI怎么找? 2575522
邀请新用户注册赠送积分活动 1530862
关于科研通互助平台的介绍 1489554