亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning to predict in-hospital outcomes in patients with acute heart failure

医学 逻辑回归 过度拟合 心力衰竭 接收机工作特性 Lasso(编程语言) 急诊医学 重症监护医学 前瞻性队列研究 心源性休克 内科学 机器学习 心肌梗塞 人工神经网络 万维网 计算机科学
作者
B. Sibilia,Solenn Toupin,Jean‐Guillaume Dillinger,J.B. Brette,A Ramonatxo,Guillaume Schurtz,Khalil Hamzi,Antonin Trimaille,Nouha Bouali,Nicolas Piliero,Damien Logeart,S. Andrieu,Fabien Picard,Patrick Henry,Théo Pezel
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1102
摘要

Abstract Background Acute heart failure (AHF) is a leading cause of mortality worldwide and a major public health issue with a still high rate of in-hospital outcomes. Physicians need more investigations and new tools to prevent those high-risk patients from major adverse events (MAE). While few scores are available for risk stratification of patients hospitalized for AHF using traditional statistical methods, the potential benefit of machine-learning (ML) is not established. Purpose To investigate the feasibility and accuracy of a machine-learning (ML) model using clinical, biological and echocardiographic data to predict in-hospital MAE in patients hospitalized for AHF and compare its performance with traditional models and existing scores. Methods The study cohort consists of consecutive patients admitted for AHF included in the French nationwide, multicenter, prospective, ADDICTO-USIC study involving 39 centers from 7 to 22 April 2021. Traditional clinical, biological, electrocardiographic and echographic data as well as a standardized exhaled carbon monoxide (CO) measurement and the presence of illicit drugs determined through an urine drug assay were recorded. Three ML models were developed using clinical and echocardiographic parameters to predict in-hospital MAE, including death, resuscitated cardiac arrest or cardiogenic shock requiring medical or mechanical hemodynamic support. Least absolute shrinkage and selection operator (LASSO) regression was used to select variables and prevent model overfitting. The ML models (LASSO, random forest and XGBoost) were then trained on 70% of patients and evaluated on the other 30% as internal validation. Their performance was compared against standard logistic regression model, using receiver operating characteristics (ROC) and precision-recall (PR) curves and area-under-the curves (AUC). Results Among 459 consecutive patients included (age 68±14 years, 68% male), 47 had in-hospital MAE (9.8%). Out of 28 clinical, biological, ECG, and echocardiographic variables, seven were selected as being the most important in predicting MAE in the training set (N=322): mean arterial pressure (MAP), ischemic cardiomyopathy etiology, sub-aortic velocity time integral (VTI), E/e’, tricuspid annular plane systolic excursion (TAPSE), illicit drugs and Carbon monoxide. The random forest model showed the best performance compared with the other ML models (AUROC=0.82, PR-AUC=0.48, F1 score=0.56). Our ML-score exhibited a higher AUC compared with an existing score for prediction of MAE (AUROC for ML score: 0.82 vs Acute HF-score: all p<0.001). Conclusions The random forest ML-model including seven clinical and echocardiographic variables, including carbon monoxide level and illicit drugs use, exhibited a better performance than traditional statistical methods or existing scores to predict in-hospital outcomes in patients admitted for AHF.Feature selection by LASSOPerformances of ML models on test set
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carl发布了新的文献求助10
刚刚
苏离应助科研通管家采纳,获得20
8秒前
12秒前
懿轩发布了新的文献求助20
17秒前
火星仙人掌完成签到 ,获得积分10
22秒前
善学以致用应助了了采纳,获得10
23秒前
山野完成签到 ,获得积分10
24秒前
26秒前
28秒前
粥粥sqk发布了新的文献求助10
32秒前
32秒前
sunset发布了新的文献求助10
35秒前
ccc完成签到 ,获得积分10
39秒前
懿轩完成签到,获得积分10
42秒前
YZ完成签到,获得积分10
44秒前
CodeCraft应助Viiigo采纳,获得10
54秒前
57秒前
lc发布了新的文献求助10
1分钟前
拼搏愚志完成签到 ,获得积分10
1分钟前
顾矜应助Carl采纳,获得10
1分钟前
浮游应助sunset采纳,获得10
1分钟前
jh完成签到,获得积分10
1分钟前
手打鱼丸完成签到 ,获得积分10
1分钟前
NSS完成签到,获得积分10
1分钟前
浮游应助边缘人采纳,获得10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
英姑应助小琳子才是我采纳,获得10
1分钟前
1分钟前
orixero应助风笛采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
了了发布了新的文献求助10
1分钟前
风笛发布了新的文献求助10
1分钟前
中级奥术师完成签到,获得积分10
2分钟前
大个应助casperzwj采纳,获得10
2分钟前
Apei完成签到 ,获得积分10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334769
求助须知:如何正确求助?哪些是违规求助? 4472812
关于积分的说明 13920830
捐赠科研通 4366779
什么是DOI,文献DOI怎么找? 2399263
邀请新用户注册赠送积分活动 1392372
关于科研通互助平台的介绍 1363297