Machine learning to predict in-hospital outcomes in patients with acute heart failure

医学 逻辑回归 过度拟合 心力衰竭 接收机工作特性 Lasso(编程语言) 急诊医学 重症监护医学 前瞻性队列研究 心源性休克 内科学 机器学习 心肌梗塞 人工神经网络 万维网 计算机科学
作者
B. Sibilia,Solenn Toupin,Jean‐Guillaume Dillinger,J.B. Brette,A Ramonatxo,Guillaume Schurtz,Khalil Hamzi,Antonin Trimaille,Nouha Bouali,Nicolas Piliero,Damien Logeart,S. Andrieu,Fabien Picard,Patrick Henry,Théo Pezel
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.1102
摘要

Abstract Background Acute heart failure (AHF) is a leading cause of mortality worldwide and a major public health issue with a still high rate of in-hospital outcomes. Physicians need more investigations and new tools to prevent those high-risk patients from major adverse events (MAE). While few scores are available for risk stratification of patients hospitalized for AHF using traditional statistical methods, the potential benefit of machine-learning (ML) is not established. Purpose To investigate the feasibility and accuracy of a machine-learning (ML) model using clinical, biological and echocardiographic data to predict in-hospital MAE in patients hospitalized for AHF and compare its performance with traditional models and existing scores. Methods The study cohort consists of consecutive patients admitted for AHF included in the French nationwide, multicenter, prospective, ADDICTO-USIC study involving 39 centers from 7 to 22 April 2021. Traditional clinical, biological, electrocardiographic and echographic data as well as a standardized exhaled carbon monoxide (CO) measurement and the presence of illicit drugs determined through an urine drug assay were recorded. Three ML models were developed using clinical and echocardiographic parameters to predict in-hospital MAE, including death, resuscitated cardiac arrest or cardiogenic shock requiring medical or mechanical hemodynamic support. Least absolute shrinkage and selection operator (LASSO) regression was used to select variables and prevent model overfitting. The ML models (LASSO, random forest and XGBoost) were then trained on 70% of patients and evaluated on the other 30% as internal validation. Their performance was compared against standard logistic regression model, using receiver operating characteristics (ROC) and precision-recall (PR) curves and area-under-the curves (AUC). Results Among 459 consecutive patients included (age 68±14 years, 68% male), 47 had in-hospital MAE (9.8%). Out of 28 clinical, biological, ECG, and echocardiographic variables, seven were selected as being the most important in predicting MAE in the training set (N=322): mean arterial pressure (MAP), ischemic cardiomyopathy etiology, sub-aortic velocity time integral (VTI), E/e’, tricuspid annular plane systolic excursion (TAPSE), illicit drugs and Carbon monoxide. The random forest model showed the best performance compared with the other ML models (AUROC=0.82, PR-AUC=0.48, F1 score=0.56). Our ML-score exhibited a higher AUC compared with an existing score for prediction of MAE (AUROC for ML score: 0.82 vs Acute HF-score: all p<0.001). Conclusions The random forest ML-model including seven clinical and echocardiographic variables, including carbon monoxide level and illicit drugs use, exhibited a better performance than traditional statistical methods or existing scores to predict in-hospital outcomes in patients admitted for AHF.Feature selection by LASSOPerformances of ML models on test set
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
up发布了新的文献求助10
1秒前
刘岩松完成签到,获得积分10
1秒前
企鹅大王发布了新的文献求助10
1秒前
woiwxx发布了新的文献求助10
2秒前
schen完成签到,获得积分10
2秒前
Haley完成签到 ,获得积分0
3秒前
CodeCraft应助闫富扬采纳,获得10
4秒前
5秒前
田様应助JoshuaChen采纳,获得10
5秒前
假发君完成签到,获得积分10
5秒前
Akim应助地大空天采纳,获得10
6秒前
6秒前
jianjian完成签到,获得积分10
6秒前
华仔应助无糖零脂采纳,获得10
7秒前
灵巧的荔枝完成签到,获得积分10
7秒前
woiwxx完成签到,获得积分20
7秒前
无敌周周姐完成签到,获得积分10
7秒前
111222333完成签到 ,获得积分10
8秒前
脑洞疼应助粗心的雅绿采纳,获得10
8秒前
8秒前
8秒前
8秒前
10秒前
10秒前
火星上的糖豆完成签到,获得积分10
10秒前
桐桐应助Mikecheng采纳,获得10
11秒前
无奈行恶应助笨笨的之柔采纳,获得10
11秒前
huyuan发布了新的文献求助10
11秒前
Sandro完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
victory_liu发布了新的文献求助10
13秒前
13秒前
噗噗发布了新的文献求助10
13秒前
汉小弟完成签到,获得积分10
14秒前
小高同学发布了新的文献求助10
14秒前
14秒前
鑫鑫发布了新的文献求助10
15秒前
Bio应助明亮无颜采纳,获得50
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582