Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy

计算机科学 差别隐私 水准点(测量) 趋同(经济学) 异步通信 人工智能 机器学习 对手 联合学习 分布式计算 数据挖掘 计算机安全 计算机网络 大地测量学 地理 经济 经济增长
作者
Yanan Li,Shusen Yang,Xuebin Ren,Liang Shi,Cong Zhao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (2): 1243-1256 被引量:8
标识
DOI:10.1109/tpami.2023.3332428
摘要

The fusion of federated learning and differential privacy can provide more comprehensive and rigorous privacy protection, thus attracting extensive interests from both academia and industry. However, facing the system-level challenge of device heterogeneity, most current synchronous FL paradigms exhibit low efficiency due to the straggler effect, which can be significantly reduced by Asynchronous FL (AFL). However, AFL has never been comprehensively studied, which imposes a major challenge in the utility optimization of DP-enhanced AFL. Here, theoretically motivated multi-stage adaptive private algorithms are proposed to improve the trade-off between model utility and privacy for DP-enhanced AFL. In particular, we first build two DP-enhanced AFL frameworks with consideration of universal factors for different adversary models. Then, we give a solid analysis on the model convergence of AFL, based on which, DP can be adaptively achieved with high utility. Through extensive experiments on different training models and benchmark datasets, we demonstrate that the proposed algorithms achieve the overall best performances and improve up to 24% test accuracy with the same privacy loss and have faster convergence compared with the state-of-the-art algorithms. Our frameworks provide an analytical way for private AFL and adapt to more complex FL application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仂尤完成签到,获得积分10
1秒前
刻苦千琴完成签到,获得积分10
1秒前
zxx完成签到 ,获得积分10
1秒前
strama发布了新的文献求助10
2秒前
侯瑾瑜完成签到,获得积分10
3秒前
leeson完成签到 ,获得积分10
3秒前
李健应助萤火虫啦啦采纳,获得10
3秒前
科研小狗完成签到 ,获得积分10
3秒前
3秒前
斯文败类应助趙途嘵生采纳,获得10
4秒前
ex_ritian完成签到,获得积分10
5秒前
daisies应助仂尤采纳,获得20
5秒前
1中蓝完成签到 ,获得积分10
6秒前
夏之完成签到,获得积分20
6秒前
6秒前
RY完成签到,获得积分10
8秒前
无限的珠完成签到,获得积分10
8秒前
无奈冥完成签到,获得积分10
8秒前
今后应助Justin采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得10
10秒前
10秒前
pluto应助科研通管家采纳,获得10
10秒前
卡卡西应助科研通管家采纳,获得30
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
小胖完成签到 ,获得积分10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
yookia应助科研通管家采纳,获得10
10秒前
LYY发布了新的文献求助10
10秒前
t通应助科研通管家采纳,获得10
10秒前
卡卡西应助科研通管家采纳,获得30
10秒前
12秒前
慕青应助博修采纳,获得30
13秒前
汕头凯奇发布了新的文献求助10
13秒前
binshier完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149