Multi-Stage Asynchronous Federated Learning With Adaptive Differential Privacy

计算机科学 差别隐私 水准点(测量) 趋同(经济学) 异步通信 人工智能 机器学习 对手 联合学习 分布式计算 数据挖掘 计算机安全 计算机网络 大地测量学 地理 经济 经济增长
作者
Yanan Li,Shusen Yang,Xuebin Ren,Liang Shi,Cong Zhao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1243-1256 被引量:8
标识
DOI:10.1109/tpami.2023.3332428
摘要

The fusion of federated learning and differential privacy can provide more comprehensive and rigorous privacy protection, thus attracting extensive interests from both academia and industry. However, facing the system-level challenge of device heterogeneity, most current synchronous FL paradigms exhibit low efficiency due to the straggler effect, which can be significantly reduced by Asynchronous FL (AFL). However, AFL has never been comprehensively studied, which imposes a major challenge in the utility optimization of DP-enhanced AFL. Here, theoretically motivated multi-stage adaptive private algorithms are proposed to improve the trade-off between model utility and privacy for DP-enhanced AFL. In particular, we first build two DP-enhanced AFL frameworks with consideration of universal factors for different adversary models. Then, we give a solid analysis on the model convergence of AFL, based on which, DP can be adaptively achieved with high utility. Through extensive experiments on different training models and benchmark datasets, we demonstrate that the proposed algorithms achieve the overall best performances and improve up to 24% test accuracy with the same privacy loss and have faster convergence compared with the state-of-the-art algorithms. Our frameworks provide an analytical way for private AFL and adapt to more complex FL application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸笑白发布了新的文献求助10
刚刚
2秒前
xg发布了新的文献求助10
2秒前
3秒前
7秒前
NexusExplorer应助优雅海雪采纳,获得10
7秒前
科研通AI5应助heidi采纳,获得10
8秒前
传统的孤丝完成签到 ,获得积分10
9秒前
10秒前
科研通AI5应助susu采纳,获得10
10秒前
11秒前
13秒前
科研通AI2S应助诸笑白采纳,获得10
13秒前
13秒前
13秒前
研友_VZG7GZ应助黄啊涛采纳,获得10
14秒前
迷路的夏之完成签到,获得积分10
15秒前
5114de完成签到,获得积分10
16秒前
大龙哥886发布了新的文献求助30
17秒前
devil发布了新的文献求助10
18秒前
19秒前
徐徐关注了科研通微信公众号
20秒前
思源应助木质素爱好者采纳,获得10
20秒前
Ricardo完成签到 ,获得积分10
23秒前
希望天下0贩的0应助devil采纳,获得10
23秒前
23秒前
Owen应助ubiqutin采纳,获得10
24秒前
油焖青椒发布了新的文献求助10
26秒前
李健应助TT采纳,获得10
26秒前
黎金鑫完成签到,获得积分10
28秒前
28秒前
yuchao_0110完成签到,获得积分10
29秒前
奶盐牙牙乐完成签到 ,获得积分10
30秒前
Santasy发布了新的文献求助10
30秒前
31秒前
呆呆发布了新的文献求助20
31秒前
舒适的平蓝完成签到 ,获得积分10
32秒前
科研通AI5应助Upupcc采纳,获得10
33秒前
33秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849