有机朗肯循环
控制理论(社会学)
计算机科学
人工神经网络
核(代数)
模型预测控制
非线性系统
支持向量机
计算
控制器(灌溉)
弹道
图层(电子)
高斯分布
数学优化
人工智能
功率(物理)
算法
发电
数学
控制(管理)
量子力学
生物
组合数学
物理
农学
有机化学
化学
天文
作者
Ming Ren,Meiqing Guo,Junghui Chen,Peng Shi,Jianhua Zhang
标识
DOI:10.1016/j.ces.2023.119552
摘要
This study proposes a machine learning-based generalized correntropy two-layer nonlinear economic model predictive control (ML-GC-TL-NEMPC) algorithm to improve the computational speed for Organic Rankine Cycle (ORC) systems with non-Gaussian disturbances. In the upper layer, the ratio of the net output power to the total heat transfer area is used as the economic performance index to optimize the optimal reference trajectory. In the lower layer, the generalized correntropy-based MPC (GC-MPC) is used to track the optimal trajectory. To quickly obtain an optimal solution, a Deep Neural Network (DNN) neural network controller is combined with kernel support vector machine (SVM). It learns the possible optimal solution via off-line training. Then it can be quickly implemented on on-line applications, so it can save the optimal calculation time. The proposed ML-GC-TL-NEMPC is applied to ORC. Its computation and performance are faster and better than the traditional two-layer EMPC and single-layer EMPC
科研通智能强力驱动
Strongly Powered by AbleSci AI