Construction of S-Scheme Co2SnO4/graphdiyne heterojunction to promote carrier transfer for efficiently photocatalytic hydrogen evolution characterized with in situ XPS

光催化 煅烧 制氢 X射线光电子能谱 催化作用 异质结 化学工程 材料科学 光催化分解水 分解水 光化学 化学 纳米技术 有机化学 光电子学 工程类
作者
Xin Guo,Qian Xiao,Tingting Yang,Yafeng Liu,Zhiliang Jin
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:325: 124764-124764 被引量:19
标识
DOI:10.1016/j.seppur.2023.124764
摘要

Graphdiyne (g-CnH2n-2), a novel two-dimensional carbon isomeric material consisting of a network of sp and sp2 co-hybridized hybridized carbons, has been highly regarded for its excellent chemical and physical properties and unique structure since it was first synthesized in 2010. However, as a photocatalyst, its application in the field of hydrogen production is still rare, which is a good opportunity for the field of photochemical catalyze hydrogen production. In this work, a binary catalyst Co2SnO4/graphdiyne was constructed by calcining graphdiyne and CoSn(OH)6 together after grinding. The structure of high-temperature calcination closely linked Co2SnO4 and graphdiyne, which led to an increased contact area and more active sites with faster photogenerated electron transfer efficiency. Therefore, Co2SnO4/graphdiyne showed good photocatalytic hydrogen production efficiency. Under the optimum amount of EY the hydrogen production rate reached 8.79 mmol g−1 h−1, which was 80.11 and 33.70 times higher than that of Co2SnO4 and graphdiyne, respectively. The construction of Co2SnO4/graphdiyne S-scheme heterojunction proved by in-situ XPS, EPR (DMPO-•O2−) experiment and the hydroxyl radical detection experiment retains high redox potential and prolongs the lifetime of photo-generated carriers. The catalyst preparation method in this work is innovative, which provides a general and high-efficiency strategy for applying the graphdiyne-based S-scheme heterojunction photocatalyst to solar energy-hydrogen energy conversion for photocatalytic water decomposition into hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助钮以南采纳,获得10
刚刚
魏修农完成签到 ,获得积分0
刚刚
samifranco发布了新的文献求助10
刚刚
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
一一应助liyk采纳,获得30
2秒前
科目三应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得20
2秒前
善学以致用应助WR任采纳,获得10
2秒前
mitty发布了新的文献求助10
3秒前
所所应助HAYZ666采纳,获得10
5秒前
ned4speed完成签到,获得积分10
7秒前
潘梁恺完成签到,获得积分20
7秒前
周周发布了新的文献求助10
10秒前
10秒前
天天快乐应助项阑悦采纳,获得10
11秒前
揽月完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
李健应助YI点半的飞机场采纳,获得10
17秒前
落寞臻发布了新的文献求助10
18秒前
19秒前
19秒前
无花果应助whisper采纳,获得10
19秒前
20秒前
图图发布了新的文献求助10
20秒前
21秒前
21秒前
scl发布了新的文献求助200
22秒前
缥缈树叶完成签到,获得积分10
25秒前
大个应助阿湛采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825