光催化
异质结
材料科学
载流子
催化作用
石墨氮化碳
光化学
纳米技术
光电子学
化学
生物化学
作者
Wenbin Jiang,Hui Zhu,Jing Yang,Beverly Qian Ling Low,Wen‐Ya Wu,Mingxi Chen,Jun Ma,Ran Long,Jingxiang Low,Houjuan Zhu,Jerry Zhi Xiong Heng,Karen Yuanting Tang,Casandra Hui Teng Chai,Ming Lin,Qiang Zhu,Yong‐Wei Zhang,Dongzhi Chi,Zibiao Li,Xian Jun Loh,Yujie Xiong,Enyi Ye
标识
DOI:10.1002/advs.202303448
摘要
Piezo-assisted photocatalysis (namely, piezo-photocatalysis), which utilizes mechanical energy to modulate spatial and energy distribution of photogenerated charge carriers, presents a promising strategy for molecule activation and reactive oxygen species (ROS) generation toward applications such as environmental remediation. However, similarly to photocatalysis, piezo-photocatalysis also suffers from inferior charge separation and utilization efficiency. Herein, a Z-scheme heterojunction composed of single Ag atoms-anchored polymeric carbon nitride (Ag-PCN) and SnO2-x is developed for efficient charge carrier transfer/separation both within the catalyst and between the catalyst and surface oxygen molecules (O2 ). As revealed by charge dynamics analysis and theoretical simulations, the synergy between the single Ag atoms and the Z-scheme heterojunction initiates a cascade electron transfer from SnO2-x to Ag-PCN and then to O2 adsorbed on Ag. With ultrasound irradiation, the polarization field generated within the piezoelectric hybrid further accelerates charge transfer and regulates the O2 activation pathway. As a result, the Ag-PCN/SnO2-x catalyst efficiently activates O2 into ·O2- , ·OH, and H2 O2 under co-excitation of visible light and ultrasound, which are consequently utilized to trigger aerobic degradation of refractory antibiotic pollutants. This work provides a promising strategy to maneuver charge transfer dynamics for efficient piezo-photocatalysis by integrating single-atom catalysts (SACs) with Z-scheme heterojunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI