亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study

医学 人工智能 卷积神经网络 深度学习 股骨头 磁共振成像 交叉验证 召回 机器学习 模式识别(心理学) 放射科 计算机科学 外科 心理学 认知心理学
作者
Xianyue Shen,Ziling He,Yi Shi,Tong Liu,Yuhui Yang,Jia Luo,Xiongfeng Tang,Bo Chen,Shenghao Xu,You Zhou,Jianlin Xiao,Yanguo Qin
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:39 (2): 379-386.e2 被引量:7
标识
DOI:10.1016/j.arth.2023.08.018
摘要

Abstract

Background

Accurate classification can facilitate the selection of appropriate interventions to delay the progression of osteonecrosis of the femoral head (ONFH). This study aimed to perform the classification of ONFH through a deep learning approach.

Methods

We retrospectively sampled 1,806 midcoronal magnetic resonance images (MRIs) of 1,337 hips from 4 institutions. Of these, 1,472 midcoronal MRIs of 1,155 hips were divided into training, validation, and test datasets with a ratio of 7:1:2 to develop a convolutional neural network model (CNN). An additional 334 midcoronal MRIs of 182 hips were used to perform external validation. The predictive performance of the CNN and the review panel was also compared.

Results

A multiclass CNN model was successfully developed. In internal validation, the overall accuracy of the CNN for predicting the severity of ONFH based on the Japanese Investigation Committee classification was 87.8%. The macroaverage values of area under the curve (AUC), precision, recall, and F-value were 0.90, 84.8, 84.8, and 84.6%, respectively. In external validation, the overall accuracy of the CNN was 83.8%. The macroaverage values of area under the curve, precision, recall, and F-value were 0.87, 79.5, 80.5, and 79.9%, respectively. In a human–machine comparison study, the CNN outperformed or was comparable to that of the deputy chief orthopaedic surgeons.

Conclusion

The CNN is feasible and robust for classifying ONFH and correctly locating the necrotic area. These findings suggest that classifying ONFH using deep learning with high accuracy and generalizability may aid in predicting femoral head collapse and clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助爱听歌书芹采纳,获得10
1秒前
天天快乐应助爱听歌书芹采纳,获得10
1秒前
12秒前
18秒前
38秒前
碳土不凡完成签到 ,获得积分10
46秒前
传奇完成签到 ,获得积分10
47秒前
Yucorn完成签到 ,获得积分10
48秒前
loewy完成签到,获得积分10
52秒前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
shiyang2014完成签到,获得积分10
1分钟前
花花公子完成签到,获得积分10
1分钟前
sola完成签到 ,获得积分10
1分钟前
懒羊羊大王完成签到 ,获得积分10
1分钟前
1分钟前
欢呼的寻双完成签到,获得积分10
1分钟前
Mollyshimmer完成签到 ,获得积分10
1分钟前
SCIfafafafa发布了新的文献求助10
2分钟前
duxiao完成签到 ,获得积分10
3分钟前
情怀应助SCIfafafafa采纳,获得10
3分钟前
小六子完成签到,获得积分10
3分钟前
Lucas应助duxiao采纳,获得10
3分钟前
Aaron完成签到 ,获得积分0
3分钟前
在水一方应助科研通管家采纳,获得30
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
4分钟前
Jasper应助hongtao采纳,获得10
4分钟前
4分钟前
JamesPei应助Fung采纳,获得10
4分钟前
4分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
5分钟前
5分钟前
qiu发布了新的文献求助10
5分钟前
顾矜应助狂发文章采纳,获得10
5分钟前
5分钟前
Djnsbj发布了新的文献求助10
5分钟前
5分钟前
狂发文章发布了新的文献求助10
5分钟前
5分钟前
寒冷苗条应助Djnsbj采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214