Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study

医学 人工智能 卷积神经网络 深度学习 股骨头 磁共振成像 交叉验证 召回 机器学习 模式识别(心理学) 放射科 计算机科学 外科 心理学 认知心理学
作者
Xianyue Shen,Ziling He,Yi Shi,Tong Liu,Yuhui Yang,Jia Luo,Xiongfeng Tang,Bo Chen,Shenghao Xu,You Zhou,Jianlin Xiao,Yanguo Qin
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (2): 379-386.e2 被引量:5
标识
DOI:10.1016/j.arth.2023.08.018
摘要

Abstract

Background

Accurate classification can facilitate the selection of appropriate interventions to delay the progression of osteonecrosis of the femoral head (ONFH). This study aimed to perform the classification of ONFH through a deep learning approach.

Methods

We retrospectively sampled 1,806 midcoronal magnetic resonance images (MRIs) of 1,337 hips from 4 institutions. Of these, 1,472 midcoronal MRIs of 1,155 hips were divided into training, validation, and test datasets with a ratio of 7:1:2 to develop a convolutional neural network model (CNN). An additional 334 midcoronal MRIs of 182 hips were used to perform external validation. The predictive performance of the CNN and the review panel was also compared.

Results

A multiclass CNN model was successfully developed. In internal validation, the overall accuracy of the CNN for predicting the severity of ONFH based on the Japanese Investigation Committee classification was 87.8%. The macroaverage values of area under the curve (AUC), precision, recall, and F-value were 0.90, 84.8, 84.8, and 84.6%, respectively. In external validation, the overall accuracy of the CNN was 83.8%. The macroaverage values of area under the curve, precision, recall, and F-value were 0.87, 79.5, 80.5, and 79.9%, respectively. In a human–machine comparison study, the CNN outperformed or was comparable to that of the deputy chief orthopaedic surgeons.

Conclusion

The CNN is feasible and robust for classifying ONFH and correctly locating the necrotic area. These findings suggest that classifying ONFH using deep learning with high accuracy and generalizability may aid in predicting femoral head collapse and clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都市丽人完成签到,获得积分10
1秒前
隐形曼青应助猪小呆采纳,获得20
1秒前
科研通AI2S应助future采纳,获得10
3秒前
3秒前
www关注了科研通微信公众号
3秒前
苏苏发布了新的文献求助10
4秒前
薰硝壤应助Jey采纳,获得10
4秒前
6秒前
Hello应助YXR采纳,获得10
7秒前
懒洋洋完成签到,获得积分10
7秒前
Peter完成签到,获得积分10
11秒前
苏苏完成签到,获得积分10
11秒前
田様应助yoyo采纳,获得10
12秒前
Owen应助关倩倩采纳,获得10
13秒前
冰河的羊发布了新的文献求助10
13秒前
14秒前
积极的小馒头应助韧迹采纳,获得10
16秒前
18秒前
Peter发布了新的文献求助30
20秒前
22秒前
lemon完成签到,获得积分10
23秒前
yoyo发布了新的文献求助10
23秒前
独特的鹅完成签到,获得积分10
23秒前
luxu完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
Enkcy完成签到,获得积分10
25秒前
包容溪灵发布了新的文献求助10
26秒前
zz发布了新的文献求助10
29秒前
29秒前
慕青应助科研通管家采纳,获得10
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
共享精神应助冰河的羊采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
marjorie应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237