Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study

医学 人工智能 卷积神经网络 深度学习 股骨头 磁共振成像 交叉验证 召回 机器学习 模式识别(心理学) 放射科 计算机科学 外科 心理学 认知心理学
作者
Xianyue Shen,Ziling He,Yi Shi,Tong Liu,Yuhui Yang,Jia Luo,Xiongfeng Tang,Bo Chen,Shenghao Xu,You Zhou,Jianlin Xiao,Yanguo Qin
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:39 (2): 379-386.e2 被引量:7
标识
DOI:10.1016/j.arth.2023.08.018
摘要

Abstract

Background

Accurate classification can facilitate the selection of appropriate interventions to delay the progression of osteonecrosis of the femoral head (ONFH). This study aimed to perform the classification of ONFH through a deep learning approach.

Methods

We retrospectively sampled 1,806 midcoronal magnetic resonance images (MRIs) of 1,337 hips from 4 institutions. Of these, 1,472 midcoronal MRIs of 1,155 hips were divided into training, validation, and test datasets with a ratio of 7:1:2 to develop a convolutional neural network model (CNN). An additional 334 midcoronal MRIs of 182 hips were used to perform external validation. The predictive performance of the CNN and the review panel was also compared.

Results

A multiclass CNN model was successfully developed. In internal validation, the overall accuracy of the CNN for predicting the severity of ONFH based on the Japanese Investigation Committee classification was 87.8%. The macroaverage values of area under the curve (AUC), precision, recall, and F-value were 0.90, 84.8, 84.8, and 84.6%, respectively. In external validation, the overall accuracy of the CNN was 83.8%. The macroaverage values of area under the curve, precision, recall, and F-value were 0.87, 79.5, 80.5, and 79.9%, respectively. In a human–machine comparison study, the CNN outperformed or was comparable to that of the deputy chief orthopaedic surgeons.

Conclusion

The CNN is feasible and robust for classifying ONFH and correctly locating the necrotic area. These findings suggest that classifying ONFH using deep learning with high accuracy and generalizability may aid in predicting femoral head collapse and clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
indigo完成签到 ,获得积分20
5秒前
明理的凌旋完成签到,获得积分20
7秒前
7秒前
盐咸小狗发布了新的文献求助10
8秒前
稳重的大白完成签到 ,获得积分10
9秒前
老实的孤丹完成签到,获得积分10
10秒前
落后的盼秋完成签到,获得积分10
10秒前
12秒前
尼尼发布了新的文献求助10
12秒前
等待寄云发布了新的文献求助10
13秒前
义气安露关注了科研通微信公众号
14秒前
14秒前
水上汀州发布了新的文献求助10
14秒前
研友_Zb1rln完成签到,获得积分10
15秒前
Zzz发布了新的文献求助10
16秒前
独特的土豆完成签到,获得积分10
17秒前
18秒前
噜噜噜完成签到,获得积分10
18秒前
21秒前
21秒前
Andy_Cheung应助尼尼采纳,获得10
21秒前
22秒前
23秒前
SYLH应助lizi6666采纳,获得10
23秒前
义气安露发布了新的文献求助10
25秒前
indigo发布了新的文献求助10
25秒前
SYLH应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
kingwill应助科研通管家采纳,获得20
26秒前
26秒前
共享精神应助盐咸小狗采纳,获得10
26秒前
张大彪完成签到,获得积分10
28秒前
好好睡觉完成签到,获得积分20
28秒前
drift发布了新的文献求助10
29秒前
Dr.L发布了新的文献求助10
29秒前
baobao发布了新的文献求助30
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761824
求助须知:如何正确求助?哪些是违规求助? 3305615
关于积分的说明 10134845
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658255
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751