Deciphering Clusters With a Deterministic Measure of Clustering Tendency

聚类分析 计算机科学 数据挖掘 统计的 可扩展性 鉴定(生物学) 探索性数据分析 情报检索 人工智能 数学 统计 数据库 植物 生物
作者
Alec F. Diallo,Paul Patras
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 1489-1501
标识
DOI:10.1109/tkde.2023.3306024
摘要

Clustering, a key aspect of exploratory data analysis, plays a crucial role in various fields such as information retrieval. Yet, the sheer volume and variety of available clustering algorithms hinder their application to specific tasks, especially given their propensity to enforce partitions, even when no clear clusters exist, often leading to fruitless efforts and erroneous conclusions. This issue highlights the importance of accurately assessing clustering tendencies prior to clustering. However, existing methods either rely on subjective visual assessment, which hinders automation of downstream tasks, or on correlations between subsets of target datasets and random distributions, limiting their practical use. Therefore, we introduce the Proximal Homogeneity Index (PHI) , a novel and deterministic statistic that reliably assesses the clustering tendencies of datasets by analyzing their internal structures via knowledge graphs. Leveraging PHI and the boundaries between clusters, we establish the Partitioning Sensitivity Index (PSI) , a new statistic designed for cluster quality assessment and optimal clustering identification. Comparative studies using twelve synthetic and real-world datasets demonstrate PHI and PSI's superiority over existing metrics for clustering tendency assessment and cluster validation. Furthermore, we demonstrate the scalability of PHI to large and high-dimensional datasets, and PSI's broad effectiveness across diverse cluster analysis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Kyt采纳,获得10
刚刚
负责钢铁侠完成签到,获得积分20
3秒前
暮霭沉沉应助cm采纳,获得10
3秒前
beibeimao发布了新的文献求助10
3秒前
芒芒发布了新的文献求助10
4秒前
4秒前
方百招完成签到,获得积分10
5秒前
完美世界应助玩命的冷珍采纳,获得10
6秒前
7秒前
Ava应助xiaohongmao采纳,获得10
7秒前
猫咪也疯狂应助ponytail采纳,获得10
8秒前
烟花应助橙子采纳,获得10
9秒前
刘洋发布了新的文献求助10
9秒前
10秒前
保佑我毕业完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
zl完成签到,获得积分10
13秒前
猫咪也疯狂应助多喝水我采纳,获得10
13秒前
13秒前
今后应助Ta沓如流星采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
kaustal完成签到,获得积分10
15秒前
小齐怪发布了新的文献求助10
15秒前
刘洋完成签到,获得积分10
17秒前
18秒前
18秒前
浅梳雨完成签到,获得积分10
18秒前
怠慢发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160802
求助须知:如何正确求助?哪些是违规求助? 2811883
关于积分的说明 7893940
捐赠科研通 2470842
什么是DOI,文献DOI怎么找? 1315775
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053