析氧
制氢
阳极
分解水
催化作用
电化学
电解
化学工程
电解水
材料科学
电催化剂
碱性水电解
无机化学
化学
电极
电解质
有机化学
物理化学
光催化
工程类
作者
Liling Liao,Dongyang Li,Rong Xiang,Qian Dang,Haiqing Zhou,Yong Zhang,Shaobin Tang,Yu Fang
标识
DOI:10.1007/s40843-023-2544-5
摘要
Splitting water into hydrogen by electrolysis using renewable electricity is one of the promising routes for green hydrogen production. The key dilemma for this electrochemical route is the extremely high overpotentials required for oxygen evolution reaction at the anode. Innovative strategies are desirable to fabricate inexpensive metal-based multifunctional catalysts with robust catalytic performance and large-current durability for electrochemical hydrogen production in freshwater or urea-containing water. Here we report the rational design and synthesis of hydrangea-like CoP/Ni3FeN heterostructure arrays as excellent multifunctional electrocatalysts for both alkaline water and urea electrolysis. This catalyst presents superb trifunctional catalytic activities and outstanding large-current durability in basic media, requiring ultralow potentials of −0.160, 1.538 and 1.419 V to facilitate hydrogen, oxygen evolution and urea oxidation reactions (HER, OER and UOR) at an extremely large current density of 1000 mA cm−2, respectively. Remarkably, the as-constructed two-electrode cells using this electrocatalyst as both the cathode and anode demand extremely low cell voltages of 1.577 and 1.668 V to deliver 500 mA cm−2 stably for urea and water electrolysis, respectively, suggesting its superb activity and outstanding stability for trifunctional catalysis. Operando Raman spectroscopic studies in combination with density functional theory calculations validate that the CoP/Ni3FeN hybrid can greatly facilitate the formation of active metal (oxy)hydroxide species for both OER and UOR, and also reduce the adsorption energy barriers of *H2O and *H intermediates for HER. This work provides an effective pathway for developing multifunctional catalysts for electrochemical hydrogen production at low voltages whenever fresh or urea-containing water is available.
科研通智能强力驱动
Strongly Powered by AbleSci AI