Multi-Scale Spatial–Spectral Attention-Based Neural Architecture Search for Hyperspectral Image Classification

计算机科学 高光谱成像 人工智能 卷积神经网络 人工神经网络 模式识别(心理学) 领域(数学) 比例(比率) 特征提取 上下文图像分类 图像(数学) 数学 物理 量子力学 纯数学
作者
Yingluo Song,Aili Wang,Yan Zhao,Haibin Wu,Yuji Iwahori
出处
期刊:Electronics [MDPI AG]
卷期号:12 (17): 3641-3641 被引量:4
标识
DOI:10.3390/electronics12173641
摘要

Convolutional neural networks (CNNs) are indeed commonly employed for hyperspectral image classification. However, the architecture of cellular neural networks typically requires manual design and fine-tuning, which can be quite laborious. Fortunately, there have been recent advancements in the field of Neural Architecture Search (NAS) that enable the automatic design of networks. These NAS techniques have significantly improved the accuracy of HSI classification, pushing it to new levels. This article proposes a Multi-Scale Spatial–Spectral Attention-based NAS, MS3ANAS) framework for HSI classification to automatically design a neural network structure for HSI classifiers. First, this paper constructs a multi-scale attention mechanism extended search space, which considers multi-scale filters to reduce parameters while maintaining large-scale receptive field and enhanced multi-scale spectral–spatial feature extraction to increase network sensitivity towards hyperspectral information. Then, we combined the slow–fast learning architecture update paradigm to optimize and iteratively update the architecture vector and effectively improve the model’s generalization ability. Finally, we introduced the Lion optimizer to track only momentum and use symbol operations to calculate updates, thereby reducing memory overhead and effectively reducing training time. The proposed NAS method demonstrates impressive classification performance and effectively improves accuracy across three HSI datasets (University of Pavia, Xuzhou, and WHU-Hi-Hanchuan).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
keyanlv完成签到,获得积分10
刚刚
富贵儿发布了新的文献求助10
2秒前
冯度翩翩完成签到,获得积分10
2秒前
sweetbearm应助健壮的涑采纳,获得10
2秒前
村里傻小子完成签到,获得积分20
2秒前
田様应助Khr1stINK采纳,获得10
3秒前
傲娇的凡旋应助小周采纳,获得10
4秒前
潇潇潇完成签到 ,获得积分10
4秒前
5秒前
英俊的铭应助XShu采纳,获得10
6秒前
Hello应助一只大肥猫采纳,获得10
7秒前
allyceacheng完成签到,获得积分10
7秒前
科研通AI5应助phd采纳,获得10
8秒前
8秒前
WTaMi完成签到 ,获得积分10
8秒前
zoe发布了新的文献求助10
8秒前
Owen应助无奈的酒窝采纳,获得10
9秒前
10秒前
12秒前
12秒前
12秒前
科研通AI5应助wangyanwxy采纳,获得10
13秒前
36456657应助豆dou采纳,获得10
13秒前
14秒前
14秒前
15秒前
buno应助jy采纳,获得10
16秒前
paparazzi221发布了新的文献求助10
17秒前
田生完成签到,获得积分10
17秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
17秒前
17秒前
爆米花应助towerman采纳,获得10
18秒前
羊笨笨完成签到 ,获得积分10
18秒前
19秒前
光亮芷天完成签到,获得积分10
19秒前
19秒前
20秒前
粗犷的问夏完成签到,获得积分10
21秒前
知行合一完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808