RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

人工智能 卷积神经网络 拉曼光谱 提取器 线性判别分析 模式识别(心理学) 化学 计算机科学 工艺工程 光学 物理 工程类
作者
Zengyun Gong,Chen Chen,Cheng Chen,Chenxi Li,Xuecong Tian,Zhongcheng Gong,Xiaoyi Lv
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1278: 341758-341758 被引量:4
标识
DOI:10.1016/j.aca.2023.341758
摘要

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的小蝴蝶完成签到,获得积分10
1秒前
天天快乐应助自信白凡采纳,获得10
1秒前
1秒前
藜誌发布了新的文献求助10
2秒前
2秒前
xcf完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助50
2秒前
bioseraph发布了新的文献求助10
3秒前
ys发布了新的文献求助10
4秒前
ZhangL发布了新的文献求助10
5秒前
6秒前
从容芸发布了新的文献求助160
7秒前
7秒前
科研通AI5应助碧蓝雨安采纳,获得10
7秒前
虚心星星完成签到,获得积分20
7秒前
微微发布了新的文献求助10
8秒前
开庆完成签到,获得积分10
8秒前
10秒前
yyy发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
研友_xLOMQZ完成签到,获得积分0
11秒前
11秒前
脆脆发布了新的文献求助10
11秒前
13秒前
浮游应助藜誌采纳,获得10
13秒前
13秒前
嘉树林发布了新的文献求助10
13秒前
科研通AI6应助hen23333采纳,获得10
13秒前
13秒前
钻石DrWang完成签到 ,获得积分10
14秒前
懵懂的毛豆应助jing采纳,获得10
15秒前
丘比特应助咩咩羊采纳,获得10
17秒前
17秒前
cyq发布了新的文献求助10
17秒前
17秒前
笨笨烨华完成签到 ,获得积分10
18秒前
爵士黄瓜发布了新的文献求助10
18秒前
19秒前
ycc完成签到,获得积分10
19秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869