清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

人工智能 卷积神经网络 拉曼光谱 提取器 线性判别分析 模式识别(心理学) 化学 计算机科学 工艺工程 光学 物理 工程类
作者
Zengyun Gong,Chen Chen,Cheng Chen,Chenxi Li,Xuecong Tian,Zhongcheng Gong,Xiaoyi Lv
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1278: 341758-341758 被引量:4
标识
DOI:10.1016/j.aca.2023.341758
摘要

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川完成签到 ,获得积分10
13秒前
23秒前
shhoing应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
shhoing应助科研通管家采纳,获得10
28秒前
LINDENG2004完成签到 ,获得积分10
49秒前
大喜喜发布了新的文献求助50
1分钟前
King16完成签到,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
王梦秋完成签到 ,获得积分10
2分钟前
热情依白完成签到 ,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
齐阳春完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
宇文雨文完成签到 ,获得积分10
5分钟前
Lucas应助didididm采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
萝卜猪完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
没时间解释了完成签到 ,获得积分10
8分钟前
老迟到的友桃完成签到 ,获得积分10
8分钟前
cdercder完成签到,获得积分0
9分钟前
xiaowangwang完成签到 ,获得积分10
9分钟前
小二郎应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
zyjsunye完成签到 ,获得积分10
10分钟前
聪慧的怀绿完成签到,获得积分10
11分钟前
11分钟前
HHM发布了新的文献求助10
12分钟前
12分钟前
12分钟前
HHM发布了新的文献求助10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
Arthur完成签到,获得积分10
12分钟前
一天完成签到 ,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561606
求助须知:如何正确求助?哪些是违规求助? 4646674
关于积分的说明 14678855
捐赠科研通 4588030
什么是DOI,文献DOI怎么找? 2517275
邀请新用户注册赠送积分活动 1490581
关于科研通互助平台的介绍 1461620