RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

人工智能 卷积神经网络 拉曼光谱 提取器 线性判别分析 模式识别(心理学) 化学 计算机科学 工艺工程 光学 物理 工程类
作者
Zengyun Gong,Chen Chen,Cheng Chen,Chenxi Li,Xuecong Tian,Zhongcheng Gong,Xiaoyi Lv
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1278: 341758-341758 被引量:4
标识
DOI:10.1016/j.aca.2023.341758
摘要

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晨曦发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
天天快乐应助rainhowk采纳,获得10
5秒前
李海发布了新的文献求助10
5秒前
好眠哈密瓜完成签到 ,获得积分10
5秒前
吴宁琳发布了新的文献求助10
6秒前
泡沫模式完成签到,获得积分10
7秒前
kunyi完成签到 ,获得积分10
7秒前
7秒前
7秒前
心灵尔安发布了新的文献求助10
8秒前
8秒前
10秒前
大方的乐天完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
七濑发布了新的文献求助10
13秒前
14秒前
科研人才完成签到 ,获得积分10
14秒前
凹凸先森发布了新的文献求助10
15秒前
深情安青应助安好采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
大模型应助非我采纳,获得10
16秒前
ayayaya发布了新的文献求助10
16秒前
简让完成签到 ,获得积分10
17秒前
科研通AI6应助果果采纳,获得10
18秒前
cmint完成签到 ,获得积分10
19秒前
JW完成签到,获得积分10
20秒前
科研通AI6应助等待小天鹅采纳,获得10
22秒前
22秒前
23秒前
车窗外发布了新的文献求助10
24秒前
所所应助复方蛋酥卷采纳,获得10
25秒前
zjr完成签到,获得积分10
27秒前
sk夏冰完成签到 ,获得积分10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449176
求助须知:如何正确求助?哪些是违规求助? 4557406
关于积分的说明 14262954
捐赠科研通 4480266
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445109
关于科研通互助平台的介绍 1420965