RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

人工智能 卷积神经网络 拉曼光谱 提取器 线性判别分析 模式识别(心理学) 化学 计算机科学 工艺工程 物理 光学 工程类
作者
Zhuocheng Gong,Chen Chen,Cheng Chen,Chenxi Li,Xuecong Tian,Zhongcheng Gong,Xiaoyi Lv
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1278: 341758-341758 被引量:2
标识
DOI:10.1016/j.aca.2023.341758
摘要

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aoao发布了新的文献求助10
1秒前
1秒前
1秒前
bboyyujie完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
丘比特应助hou采纳,获得10
5秒前
5秒前
13gly发布了新的文献求助10
5秒前
6秒前
美满广缘发布了新的文献求助10
6秒前
6秒前
学术裁缝完成签到,获得积分10
7秒前
9秒前
Oliver完成签到 ,获得积分10
10秒前
CodeCraft应助洛丶采纳,获得10
10秒前
10秒前
杨涛发布了新的文献求助10
11秒前
12秒前
sam发布了新的文献求助10
12秒前
李健的小迷弟应助wsh采纳,获得10
12秒前
Oliver关注了科研通微信公众号
13秒前
竹子完成签到,获得积分10
13秒前
星辰大海应助口外彭于晏采纳,获得10
13秒前
luyu完成签到,获得积分10
14秒前
16秒前
17秒前
酷波er应助n0rthstar采纳,获得10
17秒前
Fan发布了新的文献求助30
18秒前
脑洞疼应助zhz采纳,获得10
18秒前
20秒前
杨涛完成签到,获得积分10
21秒前
21秒前
优美一寡发布了新的文献求助10
21秒前
xxy991007发布了新的文献求助10
22秒前
Rockabye发布了新的文献求助10
23秒前
23秒前
23秒前
FashionBoy应助清脆的书桃采纳,获得10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153407
求助须知:如何正确求助?哪些是违规求助? 2804624
关于积分的说明 7860589
捐赠科研通 2462588
什么是DOI,文献DOI怎么找? 1310818
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794