亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RamanCMP: A Raman spectral classification acceleration method based on lightweight model and model compression techniques

人工智能 卷积神经网络 拉曼光谱 提取器 线性判别分析 模式识别(心理学) 化学 计算机科学 工艺工程 物理 光学 工程类
作者
Zengyun Gong,Chen Chen,Cheng Chen,Chenxi Li,Xuecong Tian,Zhongcheng Gong,Xiaoyi Lv
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1278: 341758-341758 被引量:4
标识
DOI:10.1016/j.aca.2023.341758
摘要

In recent years, Raman spectroscopy combined with deep learning techniques has been widely used in various fields such as medical, chemical, and geological. However, there is still room for optimization of deep learning techniques and model compression algorithms for processing Raman spectral data. To further optimize deep learning models applied to Raman spectroscopy, in this study time, accuracy, sensitivity, specificity and floating point operations numbers(FLOPs) are used as evaluation metrics to optimize the model, which is named RamanCompact(RamanCMP). The experimental data used in this research are selected from the RRUFF public dataset, which consists of 723 Raman spectroscopy data samples from 10 different mineral categories. In this paper, 1D-EfficientNet adapted to the spectral data as well as 1D-DRSN are proposed to improve the model classification accuracy. To achieve better classification accuracy while optimizing the time parameters, three model compression methods are designed: knowledge distillation using 1D-EfficientNet model as a teacher model to train convolutional neural networks(CNN), proposing a channel conversion method to optimize 1D-DRSN model, and using 1D-DRSN model as a feature extractor in combination with linear discriminant analysis(LDA) model for classification. Compared with the traditional LDA and CNN models, the accuracy of 1D-EfficientNet and 1D-DRSN is improved by more than 20%. The time of the distilled model is reduced by 9680.9s compared with the teacher model 1D-EfficientNet under the condition of losing 2.07% accuracy. The accuracy of the distilled model is improved by 20% compared to the CNN student model while keeping inference efficiency constant. The 1D-DRSN optimized with channel conversion method saves 60% inference time of the original 1D-DRSN model. Feature extraction reduces the inference time of 1D-DRSN model by 93% with 94.48% accuracy. This study innovatively combines lightweight models and model compression algorithms to improve the classification speed of deep learning models in the field of Raman spectroscopy, forming a complete set of analysis methods and laying the foundation for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世良发布了新的文献求助10
4秒前
4秒前
gbb完成签到,获得积分10
4秒前
体贴花卷发布了新的文献求助10
7秒前
ddddddd完成签到 ,获得积分10
8秒前
11秒前
13秒前
哈皮波发布了新的文献求助10
14秒前
暖暖完成签到,获得积分10
16秒前
哈皮波完成签到,获得积分10
25秒前
27秒前
西安浴日光能赵炜完成签到,获得积分10
27秒前
31秒前
搜集达人应助体贴花卷采纳,获得10
32秒前
51秒前
科研通AI6应助xiaozhou采纳,获得10
52秒前
Lifel完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
Ava应助xiaozhou采纳,获得10
1分钟前
山雨微凉发布了新的文献求助10
1分钟前
沉静的安青完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助山雨微凉采纳,获得10
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
Ava应助世良采纳,获得10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
古月完成签到,获得积分10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
Ava应助hxh采纳,获得10
1分钟前
企鹅完成签到,获得积分20
1分钟前
1分钟前
check003完成签到,获得积分10
2分钟前
ding应助企鹅采纳,获得10
2分钟前
科研通AI6应助浪里白条采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399