A new alternative for assessing ridging information of potato plants based on an improved benchmark structure from motion

数学 播种 数字高程模型 均方误差 遥感 统计 农学 地理 生物
作者
Huanbo Yang,Yaohua Hu,Yubin Lan,Peng Zhang,Yong He,Zhenjiang Zhou,Jun Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108220-108220 被引量:1
标识
DOI:10.1016/j.compag.2023.108220
摘要

Ridging based on crop height is essential for promoting potato plant growth and increasing potato yield. However, existing crop height estimation methods are greatly affected by the flatness of the digital terrain model (DTM), and estimation results with low leaf area are often unsatisfactory. To quickly and accurately estimate potato plant height in the early growing stage and guide ridge operation, an unmanned aerial vehicle (UAV) visible light system was used to collect RGB images of potato plants shortly after sowing and on the 50th day after planting. A red–green fit index (RGFI) was constructed using a digital orthophoto map (DOM) on the 50th day after planting potato plants and the Gaussian mixture model (GMM) threshold method to classify the experimental plots. The mean value of soil digital surface models (DSM) after classification was taken as DTM, and the benchmark structure from motion (BSfM) was proposed in combination with the structure from motion (SfM) method. The results showed that the BSfM had a higher correlation with the measured plant height than the SfM method, with an R2 value of 0.7807 and RMSE value of 1.8272 under second-order polynomial function fitting, indicating that BSfM could effectively minimise the effect of DTM flatness on plant height estimation. BSfM relies only on DSM distribution with soil and potato plants and can be easily calculated, with great potential as a rapid and cost-effective tool to estimate crop height.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲汽车发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
13633501455发布了新的文献求助20
1秒前
1秒前
大个应助lyy采纳,获得10
1秒前
江生发布了新的文献求助10
1秒前
1秒前
不知道完成签到,获得积分10
2秒前
田様应助友好代亦采纳,获得10
2秒前
2秒前
Orange应助勤奋的熊猫采纳,获得10
3秒前
Akim应助Alex采纳,获得30
3秒前
土豆晴发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
3秒前
lihoujunertou发布了新的文献求助10
4秒前
清蒸鱼发布了新的文献求助10
4秒前
Reset完成签到,获得积分10
4秒前
4秒前
成就翠柏发布了新的文献求助10
5秒前
浮世之笙发布了新的文献求助10
5秒前
luo08发布了新的文献求助10
5秒前
LFZ完成签到 ,获得积分10
5秒前
愉快的莹发布了新的文献求助10
5秒前
吴大宝完成签到,获得积分10
5秒前
光亮初兰完成签到,获得积分10
5秒前
suohaiyun完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
JamesPei应助叶子采纳,获得10
6秒前
JamesPei应助欣慰的妙菱采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
樱桃完成签到,获得积分10
7秒前
shiyue发布了新的文献求助10
8秒前
小青椒应助loren采纳,获得30
8秒前
李爱国应助夜信采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791