A new alternative for assessing ridging information of potato plants based on an improved benchmark structure from motion

数学 播种 数字高程模型 均方误差 遥感 统计 农学 地理 生物
作者
Huanbo Yang,Yaohua Hu,Yubin Lan,Peng Zhang,Yong He,Zhenjiang Zhou,Jun Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108220-108220 被引量:1
标识
DOI:10.1016/j.compag.2023.108220
摘要

Ridging based on crop height is essential for promoting potato plant growth and increasing potato yield. However, existing crop height estimation methods are greatly affected by the flatness of the digital terrain model (DTM), and estimation results with low leaf area are often unsatisfactory. To quickly and accurately estimate potato plant height in the early growing stage and guide ridge operation, an unmanned aerial vehicle (UAV) visible light system was used to collect RGB images of potato plants shortly after sowing and on the 50th day after planting. A red–green fit index (RGFI) was constructed using a digital orthophoto map (DOM) on the 50th day after planting potato plants and the Gaussian mixture model (GMM) threshold method to classify the experimental plots. The mean value of soil digital surface models (DSM) after classification was taken as DTM, and the benchmark structure from motion (BSfM) was proposed in combination with the structure from motion (SfM) method. The results showed that the BSfM had a higher correlation with the measured plant height than the SfM method, with an R2 value of 0.7807 and RMSE value of 1.8272 under second-order polynomial function fitting, indicating that BSfM could effectively minimise the effect of DTM flatness on plant height estimation. BSfM relies only on DSM distribution with soil and potato plants and can be easily calculated, with great potential as a rapid and cost-effective tool to estimate crop height.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助落后的哈密瓜采纳,获得10
刚刚
刚刚
房西的水关注了科研通微信公众号
刚刚
彭于晏应助含羞草采纳,获得20
刚刚
英俊的铭应助发嗲的乐安采纳,获得10
1秒前
刀锋完成签到,获得积分10
1秒前
Regulus完成签到,获得积分10
1秒前
小明完成签到,获得积分10
2秒前
2秒前
lxrsee发布了新的文献求助10
3秒前
3秒前
mw发布了新的文献求助10
4秒前
4秒前
偏偏完成签到,获得积分10
4秒前
4秒前
lan完成签到,获得积分20
4秒前
4秒前
所所应助星河采纳,获得30
4秒前
5秒前
5秒前
5秒前
Gsupre应助bingyu306采纳,获得10
5秒前
NexusExplorer应助积极的音响采纳,获得10
6秒前
堇妗完成签到,获得积分10
6秒前
光年发布了新的文献求助10
6秒前
6秒前
小新同学发布了新的文献求助10
7秒前
深情安青应助达到顶峰采纳,获得10
7秒前
7秒前
偏偏发布了新的文献求助10
7秒前
8秒前
8秒前
冰阔罗发布了新的文献求助10
8秒前
JHY发布了新的文献求助10
9秒前
袁袁完成签到,获得积分10
9秒前
不安平凡完成签到,获得积分10
9秒前
10秒前
鹌鹑131完成签到,获得积分10
10秒前
银玥发布了新的文献求助10
10秒前
pp发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966