Adaptive Finite-Time Consensus Tracking Control for Nonlinear Multi-Agent Systems: An Improved Tan-Type Nonlinear Mapping Function Method

非线性系统 控制理论(社会学) 有界函数 共识 计算机科学 控制器(灌溉) 多智能体系统 跟踪误差 功能(生物学) 自适应控制 数学优化 控制(管理) 数学 人工智能 生物 进化生物学 物理 数学分析 量子力学 农学
作者
Zihao Shang,Yuqiang Jiang,Ben Niu,Guangdeng Zong,Xudong Zhao,Haitao Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5434-5444 被引量:15
标识
DOI:10.1109/tase.2023.3312145
摘要

This paper investigates the adaptive finite-time consensus tracking control problem for a class of nonlinear nonstrict-feedback multi-agent systems (MASs) with output constraints. Firstly, to deal with the output constraints problem, an improved tan-type nonlinear mapping (NM) function is presented for the first time. Then, the singularity problem that exists in finite-time control is successfully avoided by employing a novel switching function. A modified tracking error involving the dependent variable of the designed NM function is constructed to guarantee that the outputs of all agnets achieve consensus tracking simultaneously and satisfy the constraints requirement. In addition, a switching threshold event-triggered control (ETC) strategy is applied to design controller for each agent, which combines the advantages of fixed threshold strategy and relative threshold strategy, and saves system communication resources well. The developed distributed adaptive finite-time control protocol ensures that all the signals in the closed-loop system are bounded and the consensus tracking control is achieved in finite time. Finally, the effectiveness of the designed control strategy is verified by a simulation experiment Note to Practitioners —Due to the wide application of nonlinear MASs in practice, such as unmanned aerial vehicles (UAVs) formation control, robots formation control and so on, the adaptive finite-time consensus tracking control problem for a class of nonlinear nonstrict-feedback MASs is studied in this paper. In practical applications, the practical fast finite-time strategy can effectively increase the system convergence, the NM method not only solves the output constraints problem well, but also overcomes the conservativeness of traditional barrier Lyapunov functions. Then, in order to reduce the communication burden of the nonlinear MASs, a switching threshold ETC is considered. In addition, the system model and backstepping technology used in this paper are general and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Candice应助孤独树叶采纳,获得10
1秒前
YUJIALING完成签到 ,获得积分10
1秒前
酷波er应助tdtk采纳,获得10
1秒前
冰冰完成签到 ,获得积分20
2秒前
2秒前
2秒前
胡桃夹子发布了新的文献求助30
2秒前
3秒前
syxz0628发布了新的文献求助10
3秒前
都可以完成签到,获得积分10
3秒前
科研通AI5应助qfchen0716网易采纳,获得10
4秒前
JamesPei应助qfchen0716网易采纳,获得10
4秒前
丘比特应助qfchen0716网易采纳,获得10
4秒前
子川发布了新的文献求助10
4秒前
田様应助qfchen0716网易采纳,获得10
4秒前
科目三应助qfchen0716网易采纳,获得10
5秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
5秒前
rr发布了新的文献求助10
5秒前
科目三应助qfchen0716网易采纳,获得10
5秒前
Orange应助qfchen0716网易采纳,获得10
5秒前
FashionBoy应助qfchen0716网易采纳,获得10
5秒前
今后应助qfchen0716网易采纳,获得10
5秒前
汉堡包应助Rober采纳,获得10
5秒前
6秒前
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
张大旭77发布了新的文献求助10
9秒前
11秒前
科研通AI5应助感动苡采纳,获得10
12秒前
雪山大地完成签到,获得积分10
12秒前
Beton_X发布了新的文献求助40
13秒前
14秒前
14秒前
嘿嘿嘿发布了新的文献求助10
14秒前
14秒前
15秒前
小肥鑫发布了新的文献求助10
16秒前
17秒前
scoot完成签到 ,获得积分10
17秒前
wjx关闭了wjx文献求助
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676