A novel wavelet-transform-based convolution classification network for cervical lymph node metastasis of papillary thyroid carcinoma in ultrasound images

淋巴 计算机科学 医学 放射科 颈淋巴结 超声波 淋巴结 人工智能 阶段(地层学) 节点(物理) 甲状腺癌 特征(语言学) 模式识别(心理学) 特征提取 转移 癌症 病理 甲状腺 内科学 古生物学 哲学 工程类 生物 结构工程 语言学
作者
Xuehai Ding,Yanting Liu,Junjuan Zhao,Ren Wang,Chengfan Li,Quan‐Yong Luo,Chen‐Tian Shen
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:109: 102298-102298 被引量:1
标识
DOI:10.1016/j.compmedimag.2023.102298
摘要

Preoperative assessment of cervical lymph nodes metastasis (CLNM) for accurate qualitative and locating diagnosis is important for choosing the best treatment option for patients with papillary thyroid cancer. Non-destructive, non-invasive ultrasound is currently the imaging method of choice for lymph node metastatic assessment. For lymph node characteristics and ultrasound images, this paper proposes a multitasking network framework for diagnosing metastatic lymph nodes in ultrasound images, in which localization module not only provides information on the location of lymph nodes to focus on the peripheral and self regions of lymph nodes, but also provides structural features of lymph nodes for subsequent classification module. In the classification module, we design a novel wavelet-transform-based convolution network. Wavelet transform is introduced into the deep learning convolution module to analyze ultrasound images in both spatial and frequency domains, which effectively enriches the feature information and improves the classification performance of the model without increasing the model parameters. We collected 510 patient data (N = 1376) from Shanghai Sixth People's Hospital regarding ultrasound lymph nodes in the neck, as well as used three publicly available ultrasound datasets, including SCUI2020 (N = 2914), DDTI (N = 480), and BUSI (N = 780). Compared to the optimal two-stage model, our model has improved its accuracy and AUC indexes by 5.83% and 4%, which outperforms the two-stage architectures and also surpasses the latest classification networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季心安发布了新的文献求助30
刚刚
1秒前
7秒前
7秒前
王算法发布了新的文献求助10
11秒前
世间再无延毕完成签到,获得积分10
11秒前
12秒前
12秒前
冷酷函完成签到 ,获得积分10
13秒前
飘逸访蕊完成签到,获得积分10
13秒前
尖果儿完成签到,获得积分10
14秒前
赵聚星完成签到,获得积分10
14秒前
米恩完成签到,获得积分10
14秒前
一一应助世间再无延毕采纳,获得10
14秒前
QI关闭了QI文献求助
14秒前
Lucas应助翠花前男友采纳,获得10
15秒前
15秒前
大写的ZZL完成签到 ,获得积分10
16秒前
飘逸访蕊发布了新的文献求助10
17秒前
17秒前
17秒前
司空雨筠发布了新的文献求助10
18秒前
xiaofenzi完成签到,获得积分10
21秒前
落后夜春发布了新的文献求助30
22秒前
传奇3应助xiaohan采纳,获得10
22秒前
23秒前
是微微发布了新的文献求助10
23秒前
25秒前
Seoyeong发布了新的文献求助10
25秒前
25秒前
shimly0101xx完成签到,获得积分10
25秒前
英俊的铭应助岳先森采纳,获得30
26秒前
完美世界应助dw采纳,获得10
28秒前
十二完成签到,获得积分10
28秒前
Barry完成签到,获得积分10
29秒前
fengzhi发布了新的文献求助10
30秒前
嘀嘀哒哒发布了新的文献求助10
31秒前
33秒前
在水一方应助是微微采纳,获得10
34秒前
bqk完成签到,获得积分10
35秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065