A deep learning-based detection method for pig body temperature using infrared thermography

热成像 感兴趣区域 人工智能 红外线的 温度测量 前额 体表 直肠温度 材料科学 生物医学工程 温度梯度 计算机科学 猪皮 皮肤温度 空气温度 声学 计算机视觉 温度控制 最高温度 图像处理 基础(拓扑) 核医学 跟踪(教育) 模式识别(心理学)
作者
Qiuju Xie,Mengru Wu,Jun Bao,Ping Zheng,Wenyang Liu,Xuefei Liu,Haiming Yu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108200-108200 被引量:16
标识
DOI:10.1016/j.compag.2023.108200
摘要

Body temperature is one of the important indicators that reflect the health of pigs. The traditional rectal temperature measurement is inconvenient and time-consuming, and also easy to cause stress responses to pigs. Infrared Thermography (ITG) was supposed to have potentials to realize non-invasive and rapid temperature detection for pigs in intensive pig farming. In this paper, an automatic temperature detection method base on ITG was developed. First, temperatures on six regions on pig body surface (i.e., forehead (FH), eyes, nose, ear root (ET), back and anus) were measured by ITG for the region of interest (ROI) selection; Then, an improved model of YOLOv5s-BiFPN was developed for automatic ROI detection and temperature extraction. A dataset with 2797 images that collected from sixteen pigs for 30 days was used for model development. It was shown that temperatures on FH and ET were supposed to be the ROI for ITG temperature detection and because of their strong correlations with the rectal temperature among the six parts on pig body surface. Also, the maximum temperature (MaxT) on FH and ET could reflect pig’s body temperature variations the best. The proposed model of YOLOv5s-BiFPN achieved optimal performances (e.g., the mAP was 96.36%, outperformance was 20 MB, target detection speed was up to 100 frame/s), and the mAPs were increased by 4.85%, 4.38%, 1.60%, 1.56%, 31.52%, and 22.42% compared with models of CenterNet, Faster R-CNN, YOLOv4, YOLOv5s, Nanodet and YOLOv5n, respectively. Therefore, it is a feasible way for pig body temperature automatic detection and facilitates early staged disease warning and environmental control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stella应助学以致用采纳,获得10
刚刚
ll完成签到 ,获得积分10
刚刚
wuliumu完成签到,获得积分10
刚刚
1秒前
张晓蕾发布了新的文献求助10
1秒前
xny发布了新的文献求助10
2秒前
Adzuki0812完成签到,获得积分10
2秒前
Murphy发布了新的文献求助10
2秒前
喵雨发布了新的文献求助30
2秒前
2秒前
隐形曼青应助包容春天采纳,获得10
3秒前
LJ完成签到,获得积分10
3秒前
Dr.lee完成签到,获得积分10
3秒前
坦率问枫完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
chiien完成签到 ,获得积分10
3秒前
传奇3应助xuqiansd采纳,获得10
3秒前
兴奋的雪糕完成签到,获得积分10
4秒前
暖落完成签到,获得积分10
4秒前
缓慢白山发布了新的文献求助10
4秒前
4秒前
无幻完成签到 ,获得积分10
4秒前
AHA完成签到,获得积分10
5秒前
犹豫的烨霖完成签到,获得积分10
5秒前
5秒前
简默发布了新的文献求助10
5秒前
Soyuu完成签到,获得积分20
5秒前
走着完成签到,获得积分10
6秒前
6秒前
依小米完成签到 ,获得积分10
7秒前
sttail应助hu采纳,获得10
7秒前
砚行书完成签到,获得积分10
7秒前
熙怡完成签到,获得积分10
7秒前
乐乐应助一念之间采纳,获得10
7秒前
rsy完成签到,获得积分10
7秒前
芝士完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017