A deep learning-based detection method for pig body temperature using infrared thermography

热成像 感兴趣区域 人工智能 红外线的 温度测量 前额 阈值 材料科学 生物医学工程 计算机科学 计算机视觉 图像(数学) 解剖 物理 光学 生物 医学 量子力学
作者
Qing Xie,Menglei Wu,Jinsong Bao,Ping Zheng,Wenyang Liu,Liu Xue-fei,Haiming Yu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108200-108200 被引量:1
标识
DOI:10.1016/j.compag.2023.108200
摘要

Body temperature is one of the important indicators that reflect the health of pigs. The traditional rectal temperature measurement is inconvenient and time-consuming, and also easy to cause stress responses to pigs. Infrared Thermography (ITG) was supposed to have potentials to realize non-invasive and rapid temperature detection for pigs in intensive pig farming. In this paper, an automatic temperature detection method base on ITG was developed. First, temperatures on six regions on pig body surface (i.e., forehead (FH), eyes, nose, ear root (ET), back and anus) were measured by ITG for the region of interest (ROI) selection; Then, an improved model of YOLOv5s-BiFPN was developed for automatic ROI detection and temperature extraction. A dataset with 2797 images that collected from sixteen pigs for 30 days was used for model development. It was shown that temperatures on FH and ET were supposed to be the ROI for ITG temperature detection and because of their strong correlations with the rectal temperature among the six parts on pig body surface. Also, the maximum temperature (MaxT) on FH and ET could reflect pig’s body temperature variations the best. The proposed model of YOLOv5s-BiFPN achieved optimal performances (e.g., the mAP was 96.36%, outperformance was 20 MB, target detection speed was up to 100 frame/s), and the mAPs were increased by 4.85%, 4.38%, 1.60%, 1.56%, 31.52%, and 22.42% compared with models of CenterNet, Faster R-CNN, YOLOv4, YOLOv5s, Nanodet and YOLOv5n, respectively. Therefore, it is a feasible way for pig body temperature automatic detection and facilitates early staged disease warning and environmental control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lyl19880908应助huanglu采纳,获得30
刚刚
wz完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
奇那昂格丶给奇那昂格丶的求助进行了留言
3秒前
枯叶蝶发布了新的文献求助30
4秒前
ajjyou完成签到,获得积分20
5秒前
5秒前
顺利的愫发布了新的文献求助10
5秒前
elivsZhou发布了新的文献求助10
6秒前
11111发布了新的文献求助10
6秒前
6秒前
一指墨发布了新的文献求助10
7秒前
楠楠2001发布了新的文献求助10
7秒前
糊涂的芷天完成签到,获得积分20
8秒前
鳄鱼蛋完成签到,获得积分10
9秒前
思源应助张yp采纳,获得10
9秒前
英姑应助对潇潇暮雨采纳,获得10
9秒前
9秒前
11秒前
Yang发布了新的文献求助10
11秒前
赘婿应助理想三寻采纳,获得10
11秒前
愉快的夏柳完成签到,获得积分10
12秒前
金蚕完成签到,获得积分10
13秒前
心台完成签到,获得积分10
13秒前
15秒前
15秒前
赘婿应助小灰灰采纳,获得10
16秒前
17秒前
17秒前
金蚕发布了新的文献求助10
18秒前
福多多完成签到,获得积分10
18秒前
Qi应助夏青荷采纳,获得10
19秒前
19秒前
20秒前
楠楠2001发布了新的文献求助10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Structural Load Modelling and Combination for Performance and Safety Evaluation 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554770
求助须知:如何正确求助?哪些是违规求助? 3130605
关于积分的说明 9387790
捐赠科研通 2830007
什么是DOI,文献DOI怎么找? 1555773
邀请新用户注册赠送积分活动 726309
科研通“疑难数据库(出版商)”最低求助积分说明 715561