A deep learning-based detection method for pig body temperature using infrared thermography

热成像 感兴趣区域 人工智能 红外线的 温度测量 前额 阈值 直肠温度 材料科学 生物医学工程 计算机科学 计算机视觉 图像(数学) 解剖 物理 光学 生物 动物科学 工程类 量子力学
作者
Qiuju Xie,Mengru Wu,Jun Bao,Ping Zheng,Wenyang Liu,Xuefei Liu,Haiming Yu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108200-108200 被引量:11
标识
DOI:10.1016/j.compag.2023.108200
摘要

Body temperature is one of the important indicators that reflect the health of pigs. The traditional rectal temperature measurement is inconvenient and time-consuming, and also easy to cause stress responses to pigs. Infrared Thermography (ITG) was supposed to have potentials to realize non-invasive and rapid temperature detection for pigs in intensive pig farming. In this paper, an automatic temperature detection method base on ITG was developed. First, temperatures on six regions on pig body surface (i.e., forehead (FH), eyes, nose, ear root (ET), back and anus) were measured by ITG for the region of interest (ROI) selection; Then, an improved model of YOLOv5s-BiFPN was developed for automatic ROI detection and temperature extraction. A dataset with 2797 images that collected from sixteen pigs for 30 days was used for model development. It was shown that temperatures on FH and ET were supposed to be the ROI for ITG temperature detection and because of their strong correlations with the rectal temperature among the six parts on pig body surface. Also, the maximum temperature (MaxT) on FH and ET could reflect pig’s body temperature variations the best. The proposed model of YOLOv5s-BiFPN achieved optimal performances (e.g., the mAP was 96.36%, outperformance was 20 MB, target detection speed was up to 100 frame/s), and the mAPs were increased by 4.85%, 4.38%, 1.60%, 1.56%, 31.52%, and 22.42% compared with models of CenterNet, Faster R-CNN, YOLOv4, YOLOv5s, Nanodet and YOLOv5n, respectively. Therefore, it is a feasible way for pig body temperature automatic detection and facilitates early staged disease warning and environmental control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
zdd发布了新的文献求助10
4秒前
Zjx发布了新的文献求助10
7秒前
丰那个丰发布了新的文献求助10
9秒前
SYLH应助科研通管家采纳,获得10
13秒前
绝情继父应助科研通管家采纳,获得10
13秒前
ED应助科研通管家采纳,获得10
13秒前
zyerl应助科研通管家采纳,获得10
13秒前
zyerl应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
14秒前
1111应助科研通管家采纳,获得20
14秒前
zyerl应助科研通管家采纳,获得10
14秒前
Sid应助科研通管家采纳,获得50
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
绝情继父应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
爆米花应助丰那个丰采纳,获得10
16秒前
gwt发布了新的文献求助10
16秒前
hying完成签到,获得积分10
19秒前
x1完成签到,获得积分10
21秒前
22秒前
25秒前
小雨完成签到 ,获得积分10
26秒前
小王发布了新的文献求助10
27秒前
28秒前
wanwan完成签到,获得积分10
28秒前
太阳花发布了新的文献求助10
30秒前
31秒前
英姑应助LI369258采纳,获得10
33秒前
33秒前
ED应助wanwan采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652