An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 计算机网络 生物化学 化学 基因
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
研友_VZG7GZ应助兴奋的以菱采纳,获得30
2秒前
xvan发布了新的文献求助10
3秒前
lin完成签到,获得积分10
3秒前
4秒前
早睡早起完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得30
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
8秒前
JAY发布了新的文献求助10
8秒前
FashionBoy应助乐乐采纳,获得10
9秒前
mist发布了新的文献求助10
10秒前
13秒前
眯眯眼的安雁完成签到 ,获得积分10
13秒前
龙妍琳发布了新的文献求助10
13秒前
Orange应助西一阿铭采纳,获得10
14秒前
15秒前
15秒前
CodeCraft应助邵shuo采纳,获得10
15秒前
17秒前
李昕123发布了新的文献求助10
17秒前
777发布了新的文献求助10
20秒前
斯文败类应助清新采纳,获得10
20秒前
花生糕完成签到,获得积分10
20秒前
猫毛完成签到 ,获得积分10
21秒前
李爱国应助白日焰火采纳,获得30
22秒前
富贵发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
活力怜雪完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431783
求助须知:如何正确求助?哪些是违规求助? 4544616
关于积分的说明 14193251
捐赠科研通 4463748
什么是DOI,文献DOI怎么找? 2446856
邀请新用户注册赠送积分活动 1438193
关于科研通互助平台的介绍 1414891