亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 计算机网络 生物化学 化学 基因
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨天祺完成签到 ,获得积分10
3秒前
Criminology34应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Ava应助DDY采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
jyy发布了新的文献求助10
17秒前
香蕉觅云应助四壁雪采纳,获得10
17秒前
李楠完成签到 ,获得积分10
22秒前
taku完成签到 ,获得积分10
25秒前
一号小玩家完成签到,获得积分10
26秒前
27秒前
31秒前
葡萄味的果茶完成签到 ,获得积分10
34秒前
34秒前
四壁雪发布了新的文献求助10
35秒前
寻道图强完成签到,获得积分0
35秒前
37秒前
执意完成签到,获得积分10
37秒前
42秒前
在水一方应助王伟采纳,获得10
42秒前
你嵙这个期刊没买完成签到,获得积分10
43秒前
胡图图啦啦完成签到 ,获得积分10
43秒前
47秒前
56秒前
56秒前
58秒前
1分钟前
王伟发布了新的文献求助10
1分钟前
走啊走发布了新的文献求助10
1分钟前
1分钟前
chenjingjing发布了新的文献求助10
1分钟前
FashionBoy应助四壁雪采纳,获得10
1分钟前
1分钟前
fantianhui完成签到 ,获得积分10
1分钟前
1分钟前
捉迷藏完成签到,获得积分0
1分钟前
1分钟前
Criminology34应助Ginny采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418230
求助须知:如何正确求助?哪些是违规求助? 4533932
关于积分的说明 14142885
捐赠科研通 4450209
什么是DOI,文献DOI怎么找? 2441129
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079