An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 计算机网络 生物化学 化学 基因
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠半青完成签到 ,获得积分10
刚刚
玖念发布了新的文献求助10
1秒前
1秒前
希望天下0贩的0应助清风采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
Drake发布了新的文献求助10
3秒前
3秒前
3秒前
一心扑在搞学术完成签到,获得积分10
3秒前
PSQ发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助范春艳采纳,获得10
5秒前
彭于晏应助魔幻灵槐采纳,获得10
6秒前
星辰大海应助ding采纳,获得10
6秒前
Ccccc发布了新的文献求助30
6秒前
天天快乐应助生动雁荷采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
Stella应助kkk采纳,获得10
8秒前
Orange应助xtlx采纳,获得10
9秒前
栀蓝完成签到,获得积分10
9秒前
shancui发布了新的文献求助10
9秒前
9秒前
9秒前
韩小小发布了新的文献求助10
9秒前
10秒前
10秒前
dagongren完成签到,获得积分10
10秒前
naych发布了新的文献求助10
10秒前
庾幻儿完成签到,获得积分10
10秒前
小二郎应助赵楠采纳,获得10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582126
求助须知:如何正确求助?哪些是违规求助? 4666270
关于积分的说明 14761714
捐赠科研通 4608242
什么是DOI,文献DOI怎么找? 2528583
邀请新用户注册赠送积分活动 1497888
关于科研通互助平台的介绍 1466665