An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 计算机网络 生物化学 化学 基因
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
magic完成签到 ,获得积分10
1秒前
酷波er应助JQing采纳,获得10
1秒前
大个应助玛卡巴卡桃桃采纳,获得10
2秒前
3秒前
Liangjt完成签到,获得积分10
4秒前
小二郎应助谢岚采纳,获得10
4秒前
隐形曼青应助谢岚采纳,获得10
4秒前
威武忆山发布了新的文献求助10
5秒前
5秒前
健壮的飞烟完成签到,获得积分10
6秒前
Yuliu发布了新的文献求助10
6秒前
俏皮从筠完成签到,获得积分10
6秒前
7秒前
7秒前
斯利美尔完成签到,获得积分10
8秒前
jane发布了新的文献求助10
8秒前
NexusExplorer应助勤恳的黑夜采纳,获得10
8秒前
8秒前
外向的雨真完成签到,获得积分10
8秒前
Meow发布了新的文献求助10
8秒前
无花果应助辛勤的马楼采纳,获得10
8秒前
8秒前
要减肥小白菜关注了科研通微信公众号
9秒前
寒冷又晴发布了新的文献求助10
10秒前
11秒前
wddddd发布了新的文献求助10
12秒前
12秒前
13秒前
舒心的冷安完成签到,获得积分10
13秒前
Hamsterball完成签到,获得积分10
14秒前
Steven24go发布了新的文献求助10
15秒前
galaxy发布了新的文献求助30
15秒前
zhugao完成签到,获得积分10
15秒前
小青年儿完成签到 ,获得积分10
16秒前
16秒前
舒心谷雪完成签到 ,获得积分10
16秒前
张匀继完成签到,获得积分10
17秒前
hjh完成签到,获得积分10
17秒前
wddddd完成签到,获得积分10
18秒前
脑洞疼应助寒冷又晴采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462129
求助须知:如何正确求助?哪些是违规求助? 4566967
关于积分的说明 14308176
捐赠科研通 4492791
什么是DOI,文献DOI怎么找? 2461282
邀请新用户注册赠送积分活动 1450282
关于科研通互助平台的介绍 1425774