亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 计算机网络 生物化学 化学 基因
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yikao完成签到 ,获得积分10
15秒前
ZIJUNZHAO完成签到 ,获得积分10
28秒前
斯文败类应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
总是很简单完成签到 ,获得积分10
1分钟前
Ykaor完成签到 ,获得积分10
1分钟前
古铜完成签到 ,获得积分10
1分钟前
1分钟前
乐正文涛发布了新的文献求助10
1分钟前
ajing完成签到,获得积分10
1分钟前
QYQ完成签到 ,获得积分10
2分钟前
msk完成签到 ,获得积分10
2分钟前
乐正怡完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
FMHChan完成签到,获得积分10
3分钟前
cy0824完成签到 ,获得积分10
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
铭铭完成签到 ,获得积分10
5分钟前
FashionBoy应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
Attaa完成签到,获得积分10
8分钟前
8分钟前
木木发布了新的文献求助10
8分钟前
9分钟前
9分钟前
gexzygg应助科研通管家采纳,获得10
9分钟前
gexzygg应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
gexzygg应助科研通管家采纳,获得10
9分钟前
9分钟前
科研通AI6应助年轻的雁露采纳,获得30
9分钟前
9分钟前
BowieHuang应助冷酷的寒天采纳,获得10
9分钟前
10分钟前
嘟嘟嘟嘟发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557