已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 生物化学 计算机网络 基因 化学
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐炫发布了新的文献求助10
1秒前
炙热的雨双完成签到 ,获得积分10
1秒前
Freddie发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
缥缈的背包完成签到 ,获得积分10
5秒前
wyx完成签到 ,获得积分10
5秒前
6秒前
7秒前
25778完成签到 ,获得积分10
8秒前
zbzfp发布了新的文献求助10
8秒前
亚米完成签到,获得积分10
9秒前
9秒前
11秒前
壮观的绿旋关注了科研通微信公众号
13秒前
13秒前
旭滟发布了新的文献求助10
14秒前
15秒前
CGFHEMAN完成签到 ,获得积分10
17秒前
可乐发布了新的文献求助10
19秒前
wanwan524完成签到 ,获得积分10
20秒前
Ambi发布了新的文献求助80
21秒前
22秒前
默默善愁完成签到,获得积分10
22秒前
旭滟完成签到,获得积分20
22秒前
慕青应助笑点低中心采纳,获得10
23秒前
乐观期待完成签到,获得积分10
24秒前
短腿小柯基完成签到 ,获得积分10
27秒前
李爱国应助Lebpom采纳,获得10
27秒前
28秒前
29秒前
Jasper应助jasonyang123456采纳,获得10
30秒前
皮皮完成签到 ,获得积分10
30秒前
33秒前
小蘑菇应助蟑螂不偷油采纳,获得10
33秒前
37秒前
39秒前
55完成签到,获得积分10
39秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338