An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties

机器人 强化学习 试验台 任务(项目管理) 稳健性(进化) 计算机科学 模拟 工程类 机器人学 控制工程 人机交互 人工智能 系统工程 计算机网络 生物化学 化学 基因
作者
Weijia Cai,Lei Huang,Zhengbo Zou
出处
期刊:Lecture notes in civil engineering 卷期号:: 259-271
标识
DOI:10.1007/978-3-031-34593-7_17
摘要

Robots can support onsite workers with repetitive and physically demanding tasks (e.g., bricklaying) to reduce workers’ risk of injuries. Central to the wide application of construction robots is solving the task of motion planning (i.e., moving objects optimally from one location to another under constraints such as joint angle limits). Currently, robots are mostly deployed in the manufacturing phase of a construction project for off-site production of building components. Motions of these robots are pre-programmed and follow strictly designed trajectories and actions. However, the motions of robots on construction sites require considerations of uncertainties, including the onsite movement of material and equipment, as well as changes to workpieces and target locations of the work piece. Therefore, it is essential to enable construction robots to handle these uncertainties while executing construction tasks to extend their applicability onsite. In this study, we proposed an integrated approach combining virtual environments and reinforcement learning (RL) to train robot control algorithms for construction tasks. We first created a virtual construction site using a game engine, which allows for the realistic simulation of robot movements. Next, the physical characteristics of the workpiece (e.g., location) were randomized in the virtual environment to simulate onsite uncertainties. An RL-based robot control algorithm (i.e., Proximal Policy Optimization) was implemented to train the robot for completing a construction task. We tested the robustness and effectiveness of the approach using a testbed construction site for window installation. Results showed that the proposed approach is effective in training the construction robot arm to handle window installation under the uncertainties of window location, with a success rate of 75% for picking up (i.e., grasping) the window and a success rate of 68% for placing the window to its target placement without crashing into other objects onsite. Researchers and practitioners can use the proposed approach to train control algorithms for their specific construction tasks to allow for flexible robot actions considering onsite uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好凌寒完成签到 ,获得积分10
3秒前
小杨发布了新的文献求助10
4秒前
renhu发布了新的文献求助100
5秒前
华仔应助Ar采纳,获得10
5秒前
景辣条完成签到,获得积分10
5秒前
7秒前
可爱的函函应助xcc采纳,获得10
9秒前
zc发布了新的文献求助10
10秒前
彭于彦祖应助科研通管家采纳,获得50
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
11秒前
云瑾应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
嗯哼应助科研通管家采纳,获得20
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
嗯哼应助科研通管家采纳,获得20
11秒前
云瑾应助科研通管家采纳,获得20
11秒前
隐形曼青应助科研通管家采纳,获得50
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
积极慕梅应助科研通管家采纳,获得20
12秒前
Amber发布了新的文献求助10
12秒前
丘比特应助小杨采纳,获得10
14秒前
lx完成签到,获得积分10
16秒前
24秒前
UncYoung完成签到,获得积分10
24秒前
haifei完成签到,获得积分10
25秒前
Amber完成签到,获得积分10
28秒前
香蕉觅云应助小文cremen采纳,获得10
31秒前
yao发布了新的文献求助10
31秒前
h嘿发布了新的文献求助10
32秒前
领导范儿应助哈哈哈哈采纳,获得10
33秒前
33秒前
wu完成签到 ,获得积分10
35秒前
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198