Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction

健康状况 支持向量机 电池(电) 灰色关联分析 均方误差 功率(物理) 计算机科学 控制理论(社会学) 统计 人工智能 数学 物理 控制(管理) 量子力学
作者
Hongyan Zuo,Jingwei Liang,Bin Zhang,Kexiang Wei,Hong Zhu,Jiqiu Tan
出处
期刊:Energy [Elsevier]
卷期号:282: 128794-128794 被引量:27
标识
DOI:10.1016/j.energy.2023.128794
摘要

In order to provide an accurate and reliable effective state-of-health (SOH) estimation, a novel hybrid data-driven estimation method by failure feature extraction is proposed. Firstly, influencing factors which reflect the failure of lithium-ion power batteries are studied, and three failure features of lithium-ion power batteries used as inputs of the estimation model are extracted by fuzzy grey relational analysis (FGRA) method. Then, the improved Least Squares Support Vector Machine (LSSVM) model is employed to estimate the SOH under different ambient temperature conditions. The results show that CC charging time, CV charging capacity and CV charging average temperature are determined as the failure features of the SOH estimation model, whose correlation degree to the battery capacity are 0.8774, 0.8104 and 0.8771, respectively. Compared with SVM, the improved LSSVM model has higher SOH estimation accuracy for the lithium-ion power battery under different ambient temperature conditions. In addition, the SOH estimation curves basically matches the actual curves, where the SOH estimation errors are less than 0.02. Moreover, the mean square error accuracy of the prediction results is at the level of 0.00001, and the determination coefficient is between 0.92 and 0.997. This work provides reference for enhancing the SOH estimation performance and safety of lithium-ion power batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhanghang完成签到,获得积分10
刚刚
1秒前
YL发布了新的文献求助10
2秒前
3秒前
蓝冰发布了新的文献求助10
3秒前
L-完成签到,获得积分10
4秒前
徐瑶瑶发布了新的文献求助10
4秒前
hji发布了新的文献求助10
4秒前
水空明完成签到 ,获得积分10
5秒前
chself发布了新的文献求助10
7秒前
哪位发布了新的文献求助10
7秒前
my expectations完成签到,获得积分20
7秒前
慕青应助sailing采纳,获得30
7秒前
7秒前
8秒前
9秒前
YL完成签到,获得积分10
10秒前
完美世界应助认真的秋柔采纳,获得10
10秒前
10秒前
10秒前
LQTZST发布了新的文献求助10
11秒前
毛豆应助yuyuyu采纳,获得30
11秒前
Lucas应助skyleon采纳,获得10
11秒前
朴实的天佑完成签到,获得积分10
12秒前
Jing发布了新的文献求助10
12秒前
小女发布了新的文献求助10
12秒前
Able完成签到,获得积分10
14秒前
14秒前
单薄飞莲发布了新的文献求助10
14秒前
14秒前
杨欢完成签到,获得积分10
15秒前
Kevin完成签到,获得积分10
16秒前
深情安青应助阿韩采纳,获得10
16秒前
杨欢发布了新的文献求助10
18秒前
研友_VZG7GZ应助研友_想想采纳,获得10
18秒前
大个应助雪白的靖雁采纳,获得10
18秒前
笑点低的云朵完成签到,获得积分10
18秒前
21秒前
LQTZST完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626