亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network

卷积神经网络 模式识别(心理学) 人工智能 残余物 计算机科学 小波变换 稳健性(进化) 特征提取 故障检测与隔离 小波 算法 执行机构 生物化学 化学 基因
作者
Xiaoan Yan,Wang‐Ji Yan,Yadong Xu,Ka‐Veng Yuen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:202: 110664-110664 被引量:17
标识
DOI:10.1016/j.ymssp.2023.110664
摘要

Due to the complex and rugged working environment of real machinery equipment, the resulting fault information is easily submerged by severe noise interference. Additionally, some informative features may be omitted if the feature learning concerns only a single sensor of machinery vibration data. Therefore, to mine more comprehensive fault information and achieve more robust fault diagnosis results, this study proposes a machinery multi-sensor fault diagnosis method based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network. As an extension of the feature mode decomposition (FMD), the adaptive multivariate feature mode decomposition (AMFMD) with the improved whale optimization algorithm (IWOA) is firstly presented to automatically decompose the collected multi-sensor vibration data into a group of multichannel mode components, which both inherit the anti-noise robustness of the original FMD and overcome the obstacles of artificial parameter selection of FMD. Subsequently, multichannel mode components containing the most abundant fault information are selected via an impulse sensitive measure hailed as multichannel comprehensive index (MCI), and the frequency slice wavelet transform (FSWT) of the selected multichannel mode components is further calculated and organically fused to generate the colored multichannel time–frequency representation (MTFR) containing multi-sensor important signatures. Finally, by integrating the advantages of feature learning of residual network (ResNet) and convolutional neural network (CNN), a multi-attention fusion residual convolutional neural network (MAFResCNN) with squeeze-excitation module (SEM) and convolutional block attention module (CBAM) is constructed to simultaneously capture global and local feature information from the fused multichannel time–frequency representation and implement automatic discrimination of machinery fault states, which can both enhance machinery fault information and whittle down the useless information, even promote the feature learning performance without significantly increasing the computational burden of the model. The validity of the proposed approach is verified by a diagnosis case of a real wind turbine, demonstrating that the proposed approach has superiority in machinery fault identification compared with some similar techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
漠北发布了新的文献求助10
4秒前
爆米花应助Monster采纳,获得10
27秒前
一天一篇sci发布了新的文献求助100
28秒前
今后应助欢呼的忘幽采纳,获得10
37秒前
乐乱完成签到 ,获得积分10
38秒前
Monster完成签到,获得积分10
39秒前
zhang完成签到,获得积分10
56秒前
完美世界应助科研通管家采纳,获得10
1分钟前
一天一篇sci发布了新的文献求助100
1分钟前
_元完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
汉堡包应助寒冷的亦凝采纳,获得10
2分钟前
桐桐应助符fu采纳,获得10
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
漠北发布了新的文献求助10
2分钟前
Akim应助欢呼的忘幽采纳,获得10
2分钟前
2分钟前
符fu发布了新的文献求助10
2分钟前
2分钟前
寒冷的亦凝完成签到,获得积分10
2分钟前
慕子默完成签到,获得积分10
2分钟前
bryceeluo完成签到,获得积分10
2分钟前
一天一篇sci发布了新的文献求助100
2分钟前
3分钟前
11完成签到 ,获得积分10
3分钟前
英俊的铭应助duanduan123采纳,获得10
3分钟前
3分钟前
Zilch完成签到 ,获得积分10
3分钟前
懒人发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130230
求助须知:如何正确求助?哪些是违规求助? 2780956
关于积分的说明 7750532
捐赠科研通 2436201
什么是DOI,文献DOI怎么找? 1294557
科研通“疑难数据库(出版商)”最低求助积分说明 623731
版权声明 600590