Leaf water content determination of oilseed rape using near-infrared hyperspectral imaging with deep learning regression methods

高光谱成像 偏最小二乘回归 含水量 校准 内容(测量理论) 回归 回归分析 均方误差 决定系数 卷积神经网络 支持向量机 人工智能 数学 计算机科学 模式识别(心理学) 统计 数学分析 岩土工程 工程类
作者
Chu Zhang,Cheng Li,Mengyu He,Zeyi Cai,Zhong‐Ping Feng,Hengnian Qi,Lei Zhou
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:134: 104921-104921 被引量:11
标识
DOI:10.1016/j.infrared.2023.104921
摘要

Water content is crucial for plant growth. Determination of water content can help monitor plant growth status. In this study, spectral data in the range of 900–1700 nm acquired by near-infrared hyperspectral imaging and corrected by black-white calibration were used to detect the water content of fresh oilseed rape leaves. The oilseed leaves were analyzed without particular treatments. Conventional machine learning (support vector regression, partial least squares regression and least absolute shrinkage and selection operator) and deep learning regression models (Convolutional Neural Network and Long Short-Term Memory) were developed to predict oilseed rape leaf water content. The performance of CNN-LSTM-R was highly accurate. The coefficient of determination and root mean square error of the testing set (RMSEP) were 0.814 and 0.005, respectively. The characteristic wavelengths with strong correlation with water content prediction of the regression models were analyzed. The results showed that the deep learning-based regression models showed great potential for water content determination of oilseed rape leaves. Therefore, this study provides an important theoretical basis and practical application for the detection of fresh plant water content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人重新开启了MMM文献应助
1秒前
4秒前
李健的小迷弟应助jimi采纳,获得10
5秒前
5秒前
旦丁洋完成签到,获得积分10
6秒前
专注鼠标发布了新的文献求助10
6秒前
爱笑的冷风完成签到 ,获得积分10
8秒前
希望天下0贩的0应助咸菜采纳,获得10
8秒前
眯眯眼的若颜完成签到,获得积分10
8秒前
淡然严青发布了新的文献求助10
8秒前
小蘑菇应助yoyo233采纳,获得10
9秒前
kk应助锤子米采纳,获得10
10秒前
高挑的宛海完成签到,获得积分10
10秒前
124332发布了新的文献求助10
10秒前
11秒前
天才罗完成签到 ,获得积分10
11秒前
11秒前
14秒前
15秒前
15秒前
crescentluo完成签到,获得积分10
16秒前
王111完成签到,获得积分10
16秒前
sg发布了新的文献求助10
17秒前
希望天下0贩的0应助诚心采纳,获得10
18秒前
18秒前
夏爽2023完成签到,获得积分10
19秒前
qpp完成签到,获得积分10
19秒前
20秒前
咸菜发布了新的文献求助10
20秒前
静待花开发布了新的文献求助10
21秒前
yjf完成签到,获得积分10
22秒前
AAA完成签到,获得积分10
23秒前
yoyo233发布了新的文献求助10
23秒前
123发布了新的文献求助10
24秒前
丘比特应助打我呀采纳,获得10
24秒前
cara应助柒佑采纳,获得10
25秒前
26秒前
我是老大应助支初晴采纳,获得10
26秒前
26秒前
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264175
求助须知:如何正确求助?哪些是违规求助? 2904362
关于积分的说明 8330033
捐赠科研通 2574592
什么是DOI,文献DOI怎么找? 1399202
科研通“疑难数据库(出版商)”最低求助积分说明 654449
邀请新用户注册赠送积分活动 633117