SAM: Self-Adapting Mixture Prior to Dynamically Borrow Information from Historical Data in Clinical Trials

先验概率 计算机科学 一致性(知识库) 贝叶斯定理 事先信息 混合(物理) 组分(热力学) 贝叶斯概率 人工智能 物理 量子力学 热力学
作者
Yang Peng,Yuansong Zhao,Lei Nie,Jonathon Vallejo,Ying Yuan
出处
期刊:Biometrics [Oxford University Press]
卷期号:79 (4): 2857-2868 被引量:8
标识
DOI:10.1111/biom.13927
摘要

Abstract Mixture priors provide an intuitive way to incorporate historical data while accounting for potential prior-data conflict by combining an informative prior with a noninformative prior. However, prespecifying the mixing weight for each component remains a crucial challenge. Ideally, the mixing weight should reflect the degree of prior-data conflict, which is often unknown beforehand, posing a significant obstacle to the application and acceptance of mixture priors. To address this challenge, we introduce self-adapting mixture (SAM) priors that determine the mixing weight using likelihood ratio test statistics or Bayes factors. SAM priors are data-driven and self-adapting, favoring the informative (noninformative) prior component when there is little (substantial) evidence of prior-data conflict. Consequently, SAM priors achieve dynamic information borrowing. We demonstrate that SAM priors exhibit desirable properties in both finite and large samples and achieve information-borrowing consistency. Moreover, SAM priors are easy to compute, data-driven, and calibration-free, mitigating the risk of data dredging. Numerical studies show that SAM priors outperform existing methods in adopting prior-data conflicts effectively. We developed R package “SAMprior” and web application that are freely available at CRAN and www.trialdesign.org to facilitate the use of SAM priors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱悼柳雪完成签到,获得积分10
刚刚
ncc发布了新的文献求助30
1秒前
酷波er应助魔幻的泽洋采纳,获得10
1秒前
夏xia发布了新的文献求助10
2秒前
千秋梧完成签到,获得积分10
2秒前
2秒前
3秒前
英姑应助安河桥采纳,获得10
3秒前
科目三应助勤恳新竹采纳,获得10
4秒前
坏坏的快乐完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得30
6秒前
李健应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
ZJ发布了新的文献求助10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得30
6秒前
今后应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
酷炫翠桃应助科研通管家采纳,获得10
6秒前
雷家发布了新的文献求助10
6秒前
ED应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
刘兆海应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
bcliu9920完成签到 ,获得积分10
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420