吸附
解吸
化学
土壤酸化
环境化学
磷
土壤pH值
生物利用度
有机质
圆周率
土壤水分
吸附
土壤科学
环境科学
生物化学
有机化学
生物
生物信息学
作者
Yuanliu Hu,Ji Chen,Dafeng Hui,Jianling Li,Xianyu Yao,Deqiang Zhang,Qi Deng
标识
DOI:10.1016/j.scitotenv.2023.167105
摘要
It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experiment in a tropical forest, we demonstrated that soil acidification increased the content of noncrystalline Fe and Al oxides by 16.3 % and 27.7 %, respectively; whereas it did not alter the absorbed Pi pool and Pi sorption capacity. Furthermore, soil acidification increased the Fe/Al-bound organic matter content by 82.5 %, causing a 54.9 % reduction in Pi desorption, a 42.3 % decrease in soluble Pi content, and a 9.2 % increase in occluded Pi content. Our findings demonstrate that soil acidification reduces Pi bioavailability by repressing Pi desorption rather than enhancing Pi sorption. These results could be attributed to the enhanced organomineral association, which competes for sorption sites with Pi and promotes the Pi occlusion. However, the interactions between organomineral-Pi have not been incorporated into global land models, which may overestimate ecosystem productivity under future acid rain scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI