The Application of an Artificial Neural Network as a Baseline Model for Condition Monitoring of Innovative Humidified Micro Gas Turbine Cycles

可再生能源 可靠性工程 分布式发电 灵活性(工程) 背景(考古学) 网格 计算机科学 工艺工程 状态监测 工程类 电气工程 古生物学 统计 几何学 数学 生物
作者
Kathryn Colquhoun,Homam Nikpey Somehsaraei,Ward De Paepe
出处
期刊:Journal of engineering for gas turbines and power [ASME International]
卷期号:146 (5)
标识
DOI:10.1115/1.4063785
摘要

Abstract Due to high penetration of renewables, the EU energy system is undergoing a transition from large-scale centralized generation toward small-scale distributed generation. The increasing share of intermittent renewables such as solar and wind has become the main driver for dispatchable distributed energy generation technologies to maintain the grid flexibility and stability. In this context, micro gas turbines (MGTs) with high fuel and operation flexibility could play a crucial role to guarantee the grid stability, enabling deeper penetration of the intermittent renewable energy sources. Despite this, the MGT market is still considered to be niche, and there are R&D&I challenges that need to be addressed to further promote this technology in distributed generation applications. Innovative MGT cycles based on a cycle humidification concept can be considered to obtain higher system performance. However, given the fact that MGTs are installed close to the consumption points, where they are operated by nontechnical prosumers with very limited access to maintenance services, they should also offer high availability and reliability to avoid unexpected outages and secure the supply. Therefore, intelligent monitoring systems are needed that can support nonexpert end-users to detect degradation and plan maintenance before a breakdown occurs. In this study, we investigated and developed advanced methods based on artificial neural networks (ANNs) for condition monitoring of a humidified MGT cycle under real-life operational conditions. To create a high-performing model, extensive data preprocessing has been conducted to remove data outliers and select optimum model features, which provide best results. Additionally, the model hyperparameters such as learning rate, momentum, and number of hidden nodes have been altered to achieve the most accurate predictions. The results of this study have provided a baseline ANN model capable of conducting condition monitoring of a micro humid air turbine (mHAT) system, which will be applied to additional studies in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
杳鸢应助眠来已觉春采纳,获得30
2秒前
3秒前
走走走完成签到,获得积分20
3秒前
4秒前
无敌最俊朗完成签到,获得积分0
4秒前
4秒前
5秒前
5秒前
junnuj发布了新的文献求助100
5秒前
coffeecoffee完成签到,获得积分10
5秒前
lzylzying发布了新的文献求助10
5秒前
5秒前
小猴子完成签到,获得积分10
6秒前
1518发布了新的文献求助10
6秒前
6秒前
YSSS完成签到,获得积分10
6秒前
妮妮发布了新的文献求助10
7秒前
7秒前
科研通AI5应助淡然的大碗采纳,获得10
7秒前
8秒前
CipherSage应助整整采纳,获得10
8秒前
8秒前
9秒前
疯狂的虔发布了新的文献求助10
9秒前
领导范儿应助走走走采纳,获得10
9秒前
10秒前
10秒前
雨天有伞发布了新的文献求助20
10秒前
包容乌发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
科研通AI5应助Tonsil01采纳,获得10
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524656
求助须知:如何正确求助?哪些是违规求助? 3105505
关于积分的说明 9274438
捐赠科研通 2802572
什么是DOI,文献DOI怎么找? 1538099
邀请新用户注册赠送积分活动 716017
科研通“疑难数据库(出版商)”最低求助积分说明 709140