MXene nanosheets coated conjugated microporous polymers hollow microspheres incorporating with phase change material for continuous desalination

蒸发 材料科学 蒸发器 化学工程 海水淡化 太阳能淡化 光强度 复合材料 光学 化学 热交换器 热力学 物理 工程类 生物化学
作者
Jiaxuan Zhou,Lijuan Yang,Xiaoyin Cao,Yingjiao Ma,Hanxue Sun,Jiyan Li,Zhaoqi Zhu,Rui Jiao,Weidong Liang,An Li
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:654: 819-829 被引量:12
标识
DOI:10.1016/j.jcis.2023.10.091
摘要

The inevitable intermittency of solar illumination during the interfacial evaporation process can cause a reduction in the evaporation performance of solar evaporators. Here, we report the fabrication of a new solar-driven interfacial evaporator using MXene nanosheets as the photothermal layer, modifying them with conjugated microporous polymer hollow microspheres, and then compounding them with the phase change material, in this case, cetyl alcohol, to form a composite evaporator (CE) that can perform all-weather solar interfacial evaporation. By combining interfacial evaporation photothermal conversion with energy storage, the evaporator achieves an evaporation rate of 1.57 kg⋅m-2⋅h-1 at a light intensity of 1 kW⋅m-2 and 2.79 kg⋅m-2⋅h-1 at a light intensity of 2 kW⋅m-2. In addition, the evaporator attains an excellent solar evaporation efficiency of over 91% in both cases and even in salt water. In addition, interestingly, our CE exhibits excellent continuous evaporation ability, e.g., the mass of evaporated water was increased by 0.36 kg⋅m-2 at a light intensity of 2 kW⋅m-2 compared to the cavity evaporator without the phase change material (PCM) when solar light was turned off. These results could be attributed to the fact that the energy released by the incorporated phase change material allows the evaporator to maintain stable evaporation under conditions of insufficient or intermittent solar irradiation, potentially providing a new opportunity for addressing the intermittent problem of evaporation at the solar interface due to unstable light intensity, thus showing great potential for practical continuous desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助ardejiang采纳,获得10
1秒前
归尘发布了新的文献求助10
1秒前
ee发布了新的文献求助10
2秒前
Dr完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
xiaomaxia完成签到,获得积分10
4秒前
5秒前
T=T生物完成签到,获得积分10
5秒前
科研通AI5应助开朗怜菡采纳,获得10
6秒前
灌水大王完成签到,获得积分10
6秒前
6秒前
小马甲应助优美寒梦采纳,获得10
7秒前
Ava应助forrest咕咕咕采纳,获得10
8秒前
见刊发布了新的文献求助10
8秒前
Lynie应助辛勤的谷云采纳,获得10
8秒前
司空晋鹏发布了新的文献求助10
9秒前
尹不愁发布了新的文献求助10
9秒前
半生瓜发布了新的文献求助10
9秒前
ddzxcz完成签到,获得积分20
9秒前
10秒前
10秒前
细心雪莲发布了新的文献求助10
10秒前
xiaomaxia发布了新的文献求助10
10秒前
领导范儿应助阿杜阿杜采纳,获得10
11秒前
无花果应助菁菁业业采纳,获得10
11秒前
ikun发布了新的文献求助10
11秒前
沐辰辰完成签到,获得积分10
12秒前
12秒前
大个应助ops采纳,获得10
12秒前
风中黎昕完成签到 ,获得积分10
12秒前
morena发布了新的文献求助10
12秒前
搜集达人应助墨菲采纳,获得10
13秒前
littlechy完成签到,获得积分10
13秒前
都市隶人完成签到,获得积分10
13秒前
热水发布了新的文献求助10
14秒前
科研通AI2S应助南枝采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476968
求助须知:如何正确求助?哪些是违规求助? 3068497
关于积分的说明 9108099
捐赠科研通 2759928
什么是DOI,文献DOI怎么找? 1514467
邀请新用户注册赠送积分活动 700244
科研通“疑难数据库(出版商)”最低求助积分说明 699412