Remaining useful life prediction for degradation processes based on the Wiener process considering parameter dependence

预言 维纳过程 依赖关系(UML) 降级(电信) 过程(计算) 最大化 计算机科学 概率密度函数 数学优化 数学 应用数学 数据挖掘 统计 人工智能 电信 操作系统
作者
Qingluan Guan,Xiukun Wei,Huixian Zhang,Limin Jia
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (3): 1221-1245 被引量:7
标识
DOI:10.1002/qre.3461
摘要

Abstract Remaining useful life prediction (RUL) is a critical procedure in the application of prognostics and health management for devices or systems. It is difficult to predict the RUL in a time‐varying external environment. Specifically, many mechanical systems typically experience various operating conditions, which have impacts on the degradation process and degradation rate. In particular, the linear degradation modeling of the Wiener process‐based RUL prediction method has attracted considerable attention recently. However, the dependency of degradation rate and operating conditions is generally ignored in the current degradation modeling, which leads to inaccurate issues in the RUL prediction. Therefore, to solve the above issues, a novel RUL prediction method based on the Wiener process considering parameter dependence is proposed in this paper. At first, a linear Wiener process degradation model considering parameter dependence is constructed to describe the dependency of the drift coefficient and operating conditions. Secondly, the probability density function of RUL is derived under the concept of first hit time. After that, the collaboration between the Bayesian update and expectation maximization algorithm is introduced to update and estimate the model parameters. Finally, the validity and applicability of the proposed method are verified by a numerical simulation and three case studies of bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助西瓜妹采纳,获得10
刚刚
arrebol发布了新的文献求助20
2秒前
2秒前
2秒前
Any发布了新的文献求助10
2秒前
2秒前
3秒前
huishoushen完成签到 ,获得积分10
3秒前
3秒前
思源应助紧张的紫文采纳,获得10
4秒前
ALL完成签到,获得积分10
5秒前
7秒前
赘婿应助xuqiansd采纳,获得10
7秒前
芝诺完成签到,获得积分10
7秒前
陈傲雪发布了新的文献求助10
7秒前
Dr发布了新的文献求助10
7秒前
宁少爷发布了新的文献求助10
8秒前
8秒前
彩彩完成签到,获得积分10
8秒前
阳光香水发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
12秒前
量子星尘发布了新的文献求助50
13秒前
13秒前
山楂卷关注了科研通微信公众号
13秒前
杨杨杨发布了新的文献求助30
14秒前
烟花应助奖品肉麻膏耶采纳,获得10
15秒前
指数爆炸发布了新的文献求助10
16秒前
mwzeng发布了新的文献求助10
16秒前
赘婿应助ziyiziyi采纳,获得10
16秒前
李慕溪发布了新的文献求助20
16秒前
JACKPAN完成签到,获得积分10
16秒前
西瓜妹发布了新的文献求助10
18秒前
科研通AI5应助身处人海采纳,获得10
19秒前
Hao完成签到,获得积分10
20秒前
酷波er应助陈傲雪采纳,获得10
20秒前
顺利的小懒猪完成签到 ,获得积分10
21秒前
一棵树莓给一棵树莓的求助进行了留言
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360