Remaining useful life prediction for degradation processes based on the Wiener process considering parameter dependence

预言 维纳过程 依赖关系(UML) 降级(电信) 过程(计算) 最大化 计算机科学 概率密度函数 数学优化 数学 应用数学 数据挖掘 统计 人工智能 电信 操作系统
作者
Qingluan Guan,Xiukun Wei,Huixian Zhang,Limin Jia
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (3): 1221-1245 被引量:7
标识
DOI:10.1002/qre.3461
摘要

Abstract Remaining useful life prediction (RUL) is a critical procedure in the application of prognostics and health management for devices or systems. It is difficult to predict the RUL in a time‐varying external environment. Specifically, many mechanical systems typically experience various operating conditions, which have impacts on the degradation process and degradation rate. In particular, the linear degradation modeling of the Wiener process‐based RUL prediction method has attracted considerable attention recently. However, the dependency of degradation rate and operating conditions is generally ignored in the current degradation modeling, which leads to inaccurate issues in the RUL prediction. Therefore, to solve the above issues, a novel RUL prediction method based on the Wiener process considering parameter dependence is proposed in this paper. At first, a linear Wiener process degradation model considering parameter dependence is constructed to describe the dependency of the drift coefficient and operating conditions. Secondly, the probability density function of RUL is derived under the concept of first hit time. After that, the collaboration between the Bayesian update and expectation maximization algorithm is introduced to update and estimate the model parameters. Finally, the validity and applicability of the proposed method are verified by a numerical simulation and three case studies of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
1秒前
任性的傲柏完成签到,获得积分10
1秒前
烟花应助佳语妍说采纳,获得10
1秒前
Aurora完成签到,获得积分10
1秒前
dhf发布了新的文献求助30
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
星辰大海应助安静季节采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
小乔应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
回穆完成签到 ,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Jasper发布了新的文献求助20
3秒前
3秒前
酷波er应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
小乔应助科研通管家采纳,获得10
3秒前
英姑应助楠楠多多采纳,获得10
3秒前
笨笨百招应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
4秒前
likeit发布了新的文献求助10
4秒前
情怀应助可爱的石头采纳,获得10
4秒前
封听白完成签到,获得积分0
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
黄橙子完成签到 ,获得积分10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
情谊超爷完成签到 ,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767