Machine learning-assisted modeling study on the density and heat capacity of ionic liquid-organic solvent binary systems

离子液体 二进制数 热容 均方误差 摩尔分数 工作(物理) 过程(计算) 溶剂 计算机科学 热力学 材料科学 机器学习 人工智能 数学 化学 有机化学 统计 物理 算术 操作系统 催化作用
作者
Xinyan Liu,Jingzi Gao,Yuqiu Chen,Yingxue Fu,Yang Lei
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:390: 122972-122972 被引量:4
标识
DOI:10.1016/j.molliq.2023.122972
摘要

Properties of ionic liquids (ILs) play a crucial role in solvent design, process design, and process simulation for their various industrial applications. However, ILs come in a wide range of varieties, and obtaining their properties solely through experiments is a time-consuming and expensive process. Therefore, the development of predictive models capable of reliably estimating the properties of these compounds is essential for their effective industrial utilization. In this work, a hybrid model that combines the group contribution method with machine learning algorithms is proposed to predict two important properties (density and heat capacity) of ILs-organic solvent binary systems. This model establishes relationships between the properties and factors such as temperature, pressure, and molecular structure. The predictive performance of three machine learning methods, namely ANN, XGBoost, and LightGBM, is compared using 2504 heat capacity data points and 34,754 density data points, respectively. The results demonstrate that all three algorithms can provide accurate predictions, with the ANN model exhibiting the best performance. For heat capacity, the ANN model achieves a mean absolute error (MAE) of 0.0557 and a squared correlation coefficient (R2) of 0.9952. Regarding density, the ANN model yields a MAE of 0.0049 and an R2 of 0.9942 for the test dataset. Furthermore, the SHAP (Shapley Additive Explanations) method is employed to analyze the importance of each structure and parameter in the prediction results. The analysis reveals that the mole fraction of IL in the binary system has the most significant positive impact on the predicted properties. The models developed in this work not only provide accurate predictions for the properties of binary mixtures but also establish a data-driven framework for predicting the physicochemical properties of multicomponent mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助xch采纳,获得10
刚刚
比目鱼发布了新的文献求助10
3秒前
彭苗苗发布了新的文献求助10
4秒前
严昌完成签到,获得积分20
4秒前
一一应助安陌煜采纳,获得50
4秒前
4秒前
5秒前
6秒前
严昌发布了新的文献求助10
6秒前
SenA发布了新的文献求助10
7秒前
7秒前
夏青荷发布了新的文献求助10
9秒前
XLT发布了新的文献求助10
10秒前
橘子发布了新的文献求助10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
DK应助科研通管家采纳,获得30
11秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
taro发布了新的文献求助10
12秒前
12秒前
chen完成签到,获得积分0
13秒前
祁丶发布了新的文献求助30
14秒前
就这杨吗发布了新的文献求助10
15秒前
香蕉觅云应助404采纳,获得10
16秒前
玉米发布了新的文献求助10
17秒前
香蕉觅云应助港岛妹妹采纳,获得10
17秒前
追梦人2016完成签到 ,获得积分10
17秒前
YANG完成签到,获得积分10
17秒前
taro完成签到,获得积分10
19秒前
21秒前
橘子完成签到,获得积分20
21秒前
情怀应助西西采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605