The diagnostic and prognostic value of tsRNAs in gastric cancers: a systematic review and meta-analysis

诊断优势比 内科学 优势比 置信区间 危险系数 接收机工作特性 医学 荟萃分析 癌症 肿瘤科 胃肠病学
作者
Hua Gao,Qiankun Zhang,Weibing Wu,Jing Gu,Jia Li
出处
期刊:Expert Review of Molecular Diagnostics [Informa]
卷期号:23 (11): 985-997 被引量:1
标识
DOI:10.1080/14737159.2023.2254237
摘要

ABSTRACTBackground Gastric cancer (GC) is one of the most common types of cancer worldwide. Recent studies have shown that tsRNAs play important roles in GC and that changes in the expression levels of tsRNAs can be used for GC diagnosis and treatment response prediction.Research design and methods Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the correlation between tsRNA expression and prognosis and other clinicopathologic features of GC patients. The sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and diagnostic odds ratio (DOR) were analyzed to evaluate the diagnostic value of tsRNAs.Results The results showed that patients with tsRNA upregulation had a poor prognosis (HR = 2.48, 95% CI: 1.85–3.34), while patients with tsRNA downregulation had a favorable prognosis (HR = 0.55, 95% CI: 0.31–0.98). In addition, tsRNA expression was significantly correlated with various clinicopathological features in patients with GC. Finally, in diagnostic studies, GC-related tsRNAs could differentiate healthy controls (AUC = 0.81, DOR = 7.74) from patients with inflammation (AUC = 0.74, DOR = 4.44).Conclusions tsRNAs have potential clinical application in GC diagnosis and prognosis evaluation. It is necessary to further assess and verify the practicability and feasibility of additional specific tsRNAs as GC markers in the future.KEYWORDS: PrognosticdiagnostictsRNAsgastric cancermeta Abbreviations GC=gastric cancerCRC=colorectal cancertsRNA=tRNA-derived small RNAtRNA=transfer RNApre-tRNA=precursor tRNAncRNA=noncoding RNAtRF=tRNA-related fragmenttiRNA=tRNA halvePRISMA=preferred reporting items for systematic reviews and meta-analysesHR=hazard ratioOR=odds ratioCI=confidence intervalTP=true positiveFP=false positiveTN=true negativeFN=false negativePLR=positive likelihood ratioNLR=negative likelihood ratioDOR=diagnostic odds ratioAUC=area under the curveNOS=Newcastle-Ottawa scoreQUADAS II=quality assessment for studies of diagnostic accuracy iiSROC=summary receiver operating characteristicOS=overall survivalDeclaration of interestsThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Author contributionsJing Gu initiated and designed this meta-analysis. Jing Gu and Qiankun Zhang were responsible for screening and evaluating the literature related to tsRNAs and GCs, and Hua Gao was responsible for intervening in the different opinions of Jing Gu and Qiankun Zhang. Weibing Wu collated and analyzed prognostic data, and Jia Li collated and analyzed diagnostic data. Jia Li and Hua Gao were responsible for the final review of the article. All the authors agreed to publish the final version.Availability of data and materialAll data generated or analyzed during this study are included in this published article.Supplementary MaterialSupplemental data for this article can be accessed online at https://doi.org/10.1080/14737159.2023.2254237.Additional informationFundingThis study was supported by the Suzhou (Taicang) Science and Technology Development Plan [SKYD2022059], and Taicang Basic Research Program Projects [TC2021JCYL05].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
TOM完成签到,获得积分10
2秒前
隐形曼青应助欣喜访旋采纳,获得10
3秒前
852应助Millie采纳,获得10
3秒前
龍Ryu完成签到,获得积分10
4秒前
内向凌兰发布了新的文献求助10
5秒前
伍秋望完成签到,获得积分10
5秒前
6秒前
7秒前
跳跃发布了新的文献求助10
8秒前
持卿应助宗磬采纳,获得20
8秒前
8秒前
花生油炒花生米完成签到 ,获得积分10
8秒前
Riki完成签到,获得积分10
10秒前
虚幻白玉发布了新的文献求助10
10秒前
德行天下完成签到,获得积分10
10秒前
Jenny应助lan采纳,获得10
11秒前
fztnh完成签到,获得积分10
11秒前
上官若男应助lyz666采纳,获得10
11秒前
顾念完成签到 ,获得积分10
11秒前
277发布了新的文献求助10
12秒前
小二郎应助GCD采纳,获得10
13秒前
hhhhhh完成签到 ,获得积分10
13秒前
甜味拾荒者完成签到,获得积分10
15秒前
小二郎应助BONBON采纳,获得10
15秒前
16秒前
charllie完成签到 ,获得积分10
16秒前
空禅yew完成签到,获得积分10
17秒前
坚强亦丝应助跳跃采纳,获得10
19秒前
英俊的铭应助cc采纳,获得10
19秒前
huangsan完成签到,获得积分10
19秒前
匹诺曹完成签到,获得积分10
19秒前
20秒前
华仔应助进取拼搏采纳,获得10
20秒前
21秒前
dingdong发布了新的文献求助10
21秒前
you完成签到 ,获得积分10
22秒前
qwf完成签到 ,获得积分10
22秒前
23秒前
万能图书馆应助一一采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808