Extracting Fetal ECG Signals Through a Hybrid Technique Utilizing Two Wavelet-Based Denoising Algorithms

小波 计算机科学 噪音(视频) 模式识别(心理学) 人工智能 降噪 心跳 算法 信号(编程语言) 小波变换 计算机安全 图像(数学) 程序设计语言
作者
P Darsana,Vaegae Naveen Kumar
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 91696-91708 被引量:3
标识
DOI:10.1109/access.2023.3308409
摘要

Developing an intelligent technique for fetal heartbeat detection to monitor the cardiac function of the fetus in the initial stages of preganancy is crucial. In this research work, two hybrid algorithms are proposed that use a combination of recursive least square algorithm (RLS) and stationary wavelet transform (SWT) for fetal ECG extraction. The goal of this research is to enhance the fetal ECG signal, reduce noise and artifact, and accurately detect the R-peaks by employing improved spatially selective noise filtration (ISSNF) method or threshold-based denoising approach in the wavelet domain. Accurate fetal R-peak detection can provide important clinical information and aid in the diagnosis and treatment of fetal heart conditions. The primary aim is to extract a clear fetal ECG signal from the mixed abdominal signal. The abdominal signal is divided into multiscale components using SWT, with different levels of noise determining the scale of wavelet decomposition. The RLS algorithm is then utilized for removing maternal ECG components, and either ISSNF or threshold-based algorithms are employed for denoising in the wavelet domain. We evaluate the effectiveness of our proposed method using both synthetic and clinical data. Our analysis involves qualitative and quantitative measures, including visual inspection, signal-to-noise ratio (SNR) computation, and QRS complex recognition. Our findings reveal that the proposed system exhibits superior performance when compared to conventional adaptive filtering techniques. The experimental results suggest that the proposed system has the potential to extract fetal ECG signals that are clear, with good SNR results and minimal disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助落落采纳,获得10
3秒前
67发布了新的文献求助10
3秒前
3秒前
溜溜完成签到,获得积分10
3秒前
xixi完成签到 ,获得积分10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
撒上咖啡应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
琪琪扬扬发布了新的文献求助10
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
hui发布了新的文献求助30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
6秒前
迟大猫应助若狂采纳,获得10
6秒前
11111发布了新的文献求助30
6秒前
溜溜发布了新的文献求助10
7秒前
8秒前
wanli445完成签到,获得积分10
9秒前
科研通AI2S应助satchzhao采纳,获得10
9秒前
是小程啊完成签到 ,获得积分10
9秒前
琪琪扬扬完成签到,获得积分10
10秒前
11111完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808