Extracting Fetal ECG Signals Through a Hybrid Technique Utilizing Two Wavelet-Based Denoising Algorithms

小波 计算机科学 噪音(视频) 模式识别(心理学) 人工智能 降噪 心跳 算法 信号(编程语言) 小波变换 计算机安全 图像(数学) 程序设计语言
作者
P Darsana,Vaegae Naveen Kumar
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 91696-91708 被引量:3
标识
DOI:10.1109/access.2023.3308409
摘要

Developing an intelligent technique for fetal heartbeat detection to monitor the cardiac function of the fetus in the initial stages of preganancy is crucial. In this research work, two hybrid algorithms are proposed that use a combination of recursive least square algorithm (RLS) and stationary wavelet transform (SWT) for fetal ECG extraction. The goal of this research is to enhance the fetal ECG signal, reduce noise and artifact, and accurately detect the R-peaks by employing improved spatially selective noise filtration (ISSNF) method or threshold-based denoising approach in the wavelet domain. Accurate fetal R-peak detection can provide important clinical information and aid in the diagnosis and treatment of fetal heart conditions. The primary aim is to extract a clear fetal ECG signal from the mixed abdominal signal. The abdominal signal is divided into multiscale components using SWT, with different levels of noise determining the scale of wavelet decomposition. The RLS algorithm is then utilized for removing maternal ECG components, and either ISSNF or threshold-based algorithms are employed for denoising in the wavelet domain. We evaluate the effectiveness of our proposed method using both synthetic and clinical data. Our analysis involves qualitative and quantitative measures, including visual inspection, signal-to-noise ratio (SNR) computation, and QRS complex recognition. Our findings reveal that the proposed system exhibits superior performance when compared to conventional adaptive filtering techniques. The experimental results suggest that the proposed system has the potential to extract fetal ECG signals that are clear, with good SNR results and minimal disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DE2022发布了新的文献求助10
刚刚
ylyla发布了新的文献求助10
刚刚
摸鱼划水完成签到,获得积分10
2秒前
上官若男应助微微采纳,获得10
3秒前
feifan123发布了新的文献求助30
5秒前
大个应助醒不过来采纳,获得10
6秒前
11秒前
11秒前
chao完成签到,获得积分10
12秒前
Dr彭0923完成签到,获得积分10
12秒前
14秒前
15秒前
微微发布了新的文献求助10
16秒前
七七七发布了新的文献求助10
17秒前
酷波er应助老八采纳,获得10
18秒前
19秒前
20秒前
123456发布了新的文献求助10
20秒前
22秒前
莫言发布了新的文献求助10
23秒前
可乐完成签到 ,获得积分10
23秒前
24秒前
田一发布了新的文献求助10
25秒前
Jack Wong发布了新的文献求助10
26秒前
xinqinjl完成签到,获得积分10
26秒前
tuanheqi应助noamin采纳,获得50
27秒前
汉堡包应助虚拟的绿蕊采纳,获得10
27秒前
LHX发布了新的文献求助10
28秒前
Foldog完成签到,获得积分10
28秒前
所所应助莫言采纳,获得10
31秒前
Akim应助yosh1222采纳,获得10
31秒前
31秒前
鲜虾鱼板面完成签到,获得积分10
32秒前
33秒前
小土豆发布了新的文献求助10
35秒前
领导范儿应助踏实的熠彤采纳,获得10
35秒前
晨风完成签到,获得积分20
36秒前
36秒前
paws发布了新的文献求助10
38秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212535
求助须知:如何正确求助?哪些是违规求助? 2861461
关于积分的说明 8128753
捐赠科研通 2527386
什么是DOI,文献DOI怎么找? 1361036
科研通“疑难数据库(出版商)”最低求助积分说明 643421
邀请新用户注册赠送积分活动 615692