Extracting Fetal ECG Signals Through a Hybrid Technique Utilizing Two Wavelet-Based Denoising Algorithms

小波 计算机科学 噪音(视频) 模式识别(心理学) 人工智能 降噪 心跳 算法 信号(编程语言) 小波变换 计算机安全 图像(数学) 程序设计语言
作者
P Darsana,Vaegae Naveen Kumar
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 91696-91708 被引量:3
标识
DOI:10.1109/access.2023.3308409
摘要

Developing an intelligent technique for fetal heartbeat detection to monitor the cardiac function of the fetus in the initial stages of preganancy is crucial. In this research work, two hybrid algorithms are proposed that use a combination of recursive least square algorithm (RLS) and stationary wavelet transform (SWT) for fetal ECG extraction. The goal of this research is to enhance the fetal ECG signal, reduce noise and artifact, and accurately detect the R-peaks by employing improved spatially selective noise filtration (ISSNF) method or threshold-based denoising approach in the wavelet domain. Accurate fetal R-peak detection can provide important clinical information and aid in the diagnosis and treatment of fetal heart conditions. The primary aim is to extract a clear fetal ECG signal from the mixed abdominal signal. The abdominal signal is divided into multiscale components using SWT, with different levels of noise determining the scale of wavelet decomposition. The RLS algorithm is then utilized for removing maternal ECG components, and either ISSNF or threshold-based algorithms are employed for denoising in the wavelet domain. We evaluate the effectiveness of our proposed method using both synthetic and clinical data. Our analysis involves qualitative and quantitative measures, including visual inspection, signal-to-noise ratio (SNR) computation, and QRS complex recognition. Our findings reveal that the proposed system exhibits superior performance when compared to conventional adaptive filtering techniques. The experimental results suggest that the proposed system has the potential to extract fetal ECG signals that are clear, with good SNR results and minimal disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DJ完成签到,获得积分10
刚刚
Owen应助打小老虎采纳,获得10
刚刚
早日毕业完成签到 ,获得积分10
1秒前
诚心小海豚完成签到,获得积分10
2秒前
jake完成签到,获得积分10
3秒前
晴天发布了新的文献求助10
4秒前
潇洒的白昼完成签到,获得积分10
5秒前
jjj发布了新的文献求助1000
6秒前
ccob完成签到,获得积分10
6秒前
7秒前
avocadoQ完成签到 ,获得积分10
7秒前
7秒前
隐形曼青应助Lengbo采纳,获得10
8秒前
鹿梨完成签到 ,获得积分10
8秒前
9秒前
踏实凝云完成签到,获得积分10
9秒前
9秒前
高文强完成签到,获得积分10
10秒前
10秒前
打小老虎完成签到,获得积分10
11秒前
楚之杰者完成签到,获得积分10
12秒前
过过发布了新的文献求助10
12秒前
哈哈完成签到 ,获得积分10
13秒前
端庄白秋发布了新的文献求助10
13秒前
兴奋的定帮应助乔巴采纳,获得10
13秒前
CDH完成签到,获得积分10
13秒前
偶然847完成签到,获得积分10
13秒前
打小老虎发布了新的文献求助10
13秒前
15秒前
好困发布了新的文献求助10
15秒前
锦秋完成签到 ,获得积分10
15秒前
爱吃饼干的土拨鼠完成签到,获得积分10
16秒前
pillow完成签到,获得积分10
16秒前
舒先生完成签到,获得积分10
18秒前
ni完成签到,获得积分10
18秒前
二巨头完成签到,获得积分10
19秒前
笑点低歌曲完成签到,获得积分10
21秒前
21秒前
天马行空完成签到,获得积分10
21秒前
ice完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470