法拉第效率
催化作用
选择性
碳纤维
电化学
电催化剂
能量转换效率
化学工程
纳米颗粒
无机化学
材料科学
化学
电极
纳米技术
有机化学
光电子学
物理化学
复合材料
复合数
工程类
作者
Sungjin Park,Ivan Grigioni,Tartela Alkayyali,Byoung‐Hoon Lee,Jiheon Kim,Erfan Shirzadi,Roham Dorakhan,Geonhui Lee,Jehad Abed,Filippo Bossola,Eui Dae Jung,Yongxiang Liang,Mi Gyoung Lee,Ali Shayesteh Zeraati,Dong Ha Kim,David Sinton,Edward H. Sargent
出处
期刊:Joule
[Elsevier]
日期:2023-08-25
卷期号:7 (10): 2335-2348
被引量:6
标识
DOI:10.1016/j.joule.2023.08.001
摘要
The electrochemical CO2 reduction reaction (CO2RR) has progressed but suffers an energy penalty from CO2 loss due to carbonate formation and crossover. Cascade CO2 to CO conversion followed by CO reduction addresses this issue, but the combined figures of carbon efficiency (CE), energy efficiency (EE), selectivity, and stability require improvement. We posited that increased CO availability near active catalytic sites could maintain selectivity even under CO-depleted conditions. Here, we present a heterojunction carbon reservoir catalyst (CRC) architecture that combines copper nanoparticles with porous carbon nanoparticles. The pyridinic and pyrrolic functionalities of CRC can absorb CO enabling high CE under CO-depleted conditions. With CRC catalyst, we achieve ethanol FE and CE of 50% and 93% (CE∗Faradaic efficiency [FE] = 47%) in flow cell at 200 mA cm−2, fully doubling the best prior CE∗FE to ethanol. In membrane electrode assembly (MEA) system, we show sustained efficiency over 85 h at 100 mA cm−2.
科研通智能强力驱动
Strongly Powered by AbleSci AI