Self-supervised deep learning for joint 3D low-dose PET/CT image denoising

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 视频去噪 非本地手段 机器学习 人工神经网络 图像去噪 图像(数学) 对象(语法) 视频跟踪 多视点视频编码
作者
Feixiang Zhao,Dongfen Li,Rui Luo,Mingzhe Liu,Xin Jiang,Junjie Hu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107391-107391 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107391
摘要

Deep learning (DL)-based denoising of low-dose positron emission tomography (LDPET) and low-dose computed tomography (LDCT) has been widely explored. However, previous methods have focused only on single modality denoising, neglecting the possibility of simultaneously denoising LDPET and LDCT using only one neural network, i.e., joint LDPET/LDCT denoising. Moreover, DL-based denoising methods generally require plenty of well-aligned LD-normal-dose (LD-ND) sample pairs, which can be difficult to obtain. To this end, we propose a self-supervised two-stage training framework named MAsk-then-Cycle (MAC), to achieve self-supervised joint LDPET/LDCT denoising. The first stage of MAC is masked autoencoder (MAE)-based pre-training and the second stage is self-supervised denoising training. Specifically, we propose a self-supervised denoising strategy named cycle self-recombination (CSR), which enables denoising without well-aligned sample pairs. Unlike other methods that treat noise as a homogeneous whole, CSR disentangles noise into signal-dependent and independent noises. This is more in line with the actual imaging process and allows for flexible recombination of noises and signals to generate new samples. These new samples contain implicit constraints that can improve the network's denoising ability. Based on these constraints, we design multiple loss functions to enable self-supervised training. Then we design a CSR-based denoising network to achieve joint 3D LDPET/LDCT denoising. Existing self-supervised methods generally lack pixel-level constraints on networks, which can easily lead to additional artifacts. Before denoising training, we perform MAE-based pre-training to indirectly impose pixel-level constraints on networks. Experiments on an LDPET/LDCT dataset demonstrate its superiority over existing methods. Our method is the first self-supervised joint LDPET/LDCT denoising method. It does not require any prior assumptions and is therefore more robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SX0000完成签到 ,获得积分10
1秒前
王汐完成签到,获得积分10
1秒前
GSQ完成签到,获得积分10
3秒前
mikebai完成签到,获得积分10
4秒前
医生小白完成签到 ,获得积分10
4秒前
常葶完成签到,获得积分10
6秒前
方半仙完成签到,获得积分10
11秒前
顾矜应助常葶采纳,获得10
11秒前
Dawn完成签到 ,获得积分10
13秒前
13秒前
mojomars完成签到,获得积分10
16秒前
柠萌完成签到 ,获得积分10
16秒前
Fei发布了新的文献求助30
20秒前
精明秋完成签到,获得积分10
22秒前
Qiancheni完成签到,获得积分10
23秒前
流沙无言完成签到 ,获得积分10
23秒前
小小智完成签到,获得积分10
25秒前
七七完成签到 ,获得积分10
25秒前
Minjalee完成签到,获得积分10
27秒前
xyzlancet完成签到,获得积分10
27秒前
Ida完成签到 ,获得积分10
31秒前
Tonald Yang完成签到,获得积分10
33秒前
Beyond095完成签到,获得积分10
36秒前
苦行僧完成签到 ,获得积分10
38秒前
自信放光芒~完成签到 ,获得积分10
38秒前
轩仔完成签到 ,获得积分10
38秒前
鱼儿忆流年完成签到 ,获得积分10
39秒前
认真的焦完成签到 ,获得积分10
42秒前
44秒前
44秒前
daisy完成签到 ,获得积分10
47秒前
菜芽君完成签到,获得积分10
47秒前
丽莉发布了新的文献求助10
49秒前
Fei发布了新的文献求助30
51秒前
我是老大应助丽莉采纳,获得10
56秒前
行走在科研的小路上完成签到,获得积分10
57秒前
浩浩完成签到 ,获得积分10
57秒前
人类繁殖学完成签到 ,获得积分10
57秒前
59秒前
11完成签到 ,获得积分10
59秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Regression-Based Normative Data for Psychological Assessment 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099819
求助须知:如何正确求助?哪些是违规求助? 2751281
关于积分的说明 7612331
捐赠科研通 2403098
什么是DOI,文献DOI怎么找? 1275171
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053