亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CrowdFA: A Privacy-Preserving Mobile Crowdsensing Paradigm via Federated Analytics

计算机科学 激励 数据聚合器 信息隐私 计算机安全 投标 密码学 拥挤感测 信息敏感性 分析 数据科学 无线传感器网络 计算机网络 业务 营销 经济 微观经济学
作者
Bowen Zhao,Xiaoguo Li,Ximeng Liu,Qingqi Pei,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5416-5430 被引量:1
标识
DOI:10.1109/tifs.2023.3308714
摘要

Mobile crowdsensing (MCS) systems typically struggle to address the challenge of data aggregation, incentive design, and privacy protection, simultaneously. However, existing solutions usually focus on one or, at most, two of these issues. To this end, this paper presents CROWDFA, a novel paradigm for privacy-preserving MCS through federated analytics (FA), which aims to achieve a well-rounded solution encompassing data aggregation, incentive design, and privacy protection. Specifically, inspired by FA, CRWODFA initiates an MCS computing paradigm that enables data aggregation and incentive design. Participants can perform aggregation operations on their local data, facilitated by CROWDFA, which supports various common data aggregation operations and bidding incentives. To address privacy concerns, CROWDFA relies solely on an efficient cryptographic primitive known as additive secret sharing to simultaneously achieve privacy-preserving data aggregation and privacy-preserving incentive. To instantiate CROWDFA, this paper presents a privacy-preserving data aggregation scheme (PRADA) based on CROWDFA, capable of supporting a range of data aggregation operations. Additionally, a CROWDFA-based privacy-preserving incentive mechanism (PRAED) is designed to ensure truthful and fair incentives for each participant, while maximizing their individual rewards. Theoretical analysis and experimental evaluations demonstrate that CROWDFA protects participants' data and bid privacy while effectively aggregating sensing data. Notably, CROWDFA outperforms state-of-the-art approaches by achieving up to 22 times faster computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
25秒前
36秒前
时间煮雨我煮鱼完成签到,获得积分10
53秒前
你嵙这个期刊没买完成签到 ,获得积分10
55秒前
59秒前
GingerF应助Jsihao采纳,获得50
1分钟前
NiNi完成签到 ,获得积分10
1分钟前
babbybai发布了新的文献求助10
1分钟前
脑洞疼应助Jsihao采纳,获得10
1分钟前
搜集达人应助Jsihao采纳,获得10
1分钟前
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
袁青寒完成签到,获得积分10
2分钟前
布吉岛应助口岸是你采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
研友_LkD29n完成签到 ,获得积分10
3分钟前
于戏完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
a3265640发布了新的文献求助20
6分钟前
ding应助风中巧曼采纳,获得10
6分钟前
Kevin完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
风中巧曼发布了新的文献求助10
6分钟前
bkagyin应助a3265640采纳,获得10
6分钟前
幽默白秋发布了新的文献求助10
6分钟前
6分钟前
orixero应助幽默白秋采纳,获得10
6分钟前
生动的豆芽完成签到 ,获得积分10
6分钟前
风中巧曼完成签到,获得积分20
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407910
求助须知:如何正确求助?哪些是违规求助? 4525355
关于积分的说明 14101684
捐赠科研通 4439234
什么是DOI,文献DOI怎么找? 2436668
邀请新用户注册赠送积分活动 1428628
关于科研通互助平台的介绍 1406729