亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CrowdFA: A Privacy-Preserving Mobile Crowdsensing Paradigm via Federated Analytics

计算机科学 激励 数据聚合器 信息隐私 计算机安全 投标 密码学 拥挤感测 信息敏感性 分析 数据科学 无线传感器网络 计算机网络 业务 营销 经济 微观经济学
作者
Bowen Zhao,Xiaoguo Li,Ximeng Liu,Qingqi Pei,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5416-5430 被引量:1
标识
DOI:10.1109/tifs.2023.3308714
摘要

Mobile crowdsensing (MCS) systems typically struggle to address the challenge of data aggregation, incentive design, and privacy protection, simultaneously. However, existing solutions usually focus on one or, at most, two of these issues. To this end, this paper presents CROWDFA, a novel paradigm for privacy-preserving MCS through federated analytics (FA), which aims to achieve a well-rounded solution encompassing data aggregation, incentive design, and privacy protection. Specifically, inspired by FA, CRWODFA initiates an MCS computing paradigm that enables data aggregation and incentive design. Participants can perform aggregation operations on their local data, facilitated by CROWDFA, which supports various common data aggregation operations and bidding incentives. To address privacy concerns, CROWDFA relies solely on an efficient cryptographic primitive known as additive secret sharing to simultaneously achieve privacy-preserving data aggregation and privacy-preserving incentive. To instantiate CROWDFA, this paper presents a privacy-preserving data aggregation scheme (PRADA) based on CROWDFA, capable of supporting a range of data aggregation operations. Additionally, a CROWDFA-based privacy-preserving incentive mechanism (PRAED) is designed to ensure truthful and fair incentives for each participant, while maximizing their individual rewards. Theoretical analysis and experimental evaluations demonstrate that CROWDFA protects participants' data and bid privacy while effectively aggregating sensing data. Notably, CROWDFA outperforms state-of-the-art approaches by achieving up to 22 times faster computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Zert采纳,获得10
1秒前
pocky发布了新的文献求助10
5秒前
追风少年完成签到,获得积分0
6秒前
YYYYY发布了新的文献求助10
11秒前
洁净乌冬面完成签到 ,获得积分10
15秒前
cy完成签到,获得积分20
16秒前
cy发布了新的文献求助10
18秒前
20秒前
尊敬的萝莉完成签到,获得积分10
20秒前
汉堡包应助Mr采纳,获得10
20秒前
煲仔饭发布了新的文献求助10
21秒前
852应助危机的盼晴采纳,获得10
23秒前
Kevin完成签到 ,获得积分10
24秒前
Lucas应助cy采纳,获得10
24秒前
luster发布了新的文献求助10
26秒前
huhaha完成签到,获得积分10
27秒前
28秒前
huhaha发布了新的文献求助10
31秒前
32秒前
闲鱼电脑完成签到,获得积分10
36秒前
qiyan完成签到,获得积分10
38秒前
oleskarabach发布了新的文献求助10
40秒前
喜悦的如娆完成签到,获得积分10
41秒前
44秒前
张豪完成签到 ,获得积分10
44秒前
mushroom关注了科研通微信公众号
46秒前
一个西藏发布了新的文献求助10
48秒前
Mr完成签到,获得积分10
48秒前
Mr发布了新的文献求助10
51秒前
天天快乐应助科研通管家采纳,获得20
52秒前
山亭应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
53秒前
55秒前
maoaq完成签到 ,获得积分10
56秒前
59秒前
1分钟前
1分钟前
1分钟前
mushroom发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519