CrowdFA: A Privacy-Preserving Mobile Crowdsensing Paradigm via Federated Analytics

计算机科学 激励 数据聚合器 信息隐私 计算机安全 投标 密码学 拥挤感测 信息敏感性 分析 数据科学 无线传感器网络 计算机网络 业务 营销 经济 微观经济学
作者
Bowen Zhao,Xiaoguo Li,Ximeng Liu,Qingqi Pei,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5416-5430 被引量:1
标识
DOI:10.1109/tifs.2023.3308714
摘要

Mobile crowdsensing (MCS) systems typically struggle to address the challenge of data aggregation, incentive design, and privacy protection, simultaneously. However, existing solutions usually focus on one or, at most, two of these issues. To this end, this paper presents CROWDFA, a novel paradigm for privacy-preserving MCS through federated analytics (FA), which aims to achieve a well-rounded solution encompassing data aggregation, incentive design, and privacy protection. Specifically, inspired by FA, CRWODFA initiates an MCS computing paradigm that enables data aggregation and incentive design. Participants can perform aggregation operations on their local data, facilitated by CROWDFA, which supports various common data aggregation operations and bidding incentives. To address privacy concerns, CROWDFA relies solely on an efficient cryptographic primitive known as additive secret sharing to simultaneously achieve privacy-preserving data aggregation and privacy-preserving incentive. To instantiate CROWDFA, this paper presents a privacy-preserving data aggregation scheme (PRADA) based on CROWDFA, capable of supporting a range of data aggregation operations. Additionally, a CROWDFA-based privacy-preserving incentive mechanism (PRAED) is designed to ensure truthful and fair incentives for each participant, while maximizing their individual rewards. Theoretical analysis and experimental evaluations demonstrate that CROWDFA protects participants' data and bid privacy while effectively aggregating sensing data. Notably, CROWDFA outperforms state-of-the-art approaches by achieving up to 22 times faster computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhh完成签到 ,获得积分10
刚刚
SallyLulu完成签到,获得积分10
刚刚
猫拖发布了新的文献求助10
刚刚
王琴完成签到,获得积分20
1秒前
1秒前
1秒前
xing完成签到,获得积分20
1秒前
wanci应助新鲜的护发素采纳,获得10
2秒前
12发布了新的文献求助10
2秒前
yi111发布了新的文献求助10
2秒前
乐乐应助舒适的易烟采纳,获得10
3秒前
方源应助眉间一把刀采纳,获得10
3秒前
英吉利25发布了新的文献求助30
3秒前
探寻完成签到,获得积分10
4秒前
ding应助Isabel采纳,获得10
4秒前
sleepy发布了新的文献求助10
4秒前
112发布了新的文献求助10
4秒前
4秒前
miko完成签到 ,获得积分10
4秒前
美丽的芒果完成签到,获得积分10
5秒前
5秒前
佩奇发布了新的文献求助10
5秒前
贪玩自中发布了新的文献求助10
5秒前
6秒前
大方的乌冬面完成签到,获得积分10
7秒前
ZZC10发布了新的文献求助10
7秒前
Zzz发布了新的文献求助10
7秒前
Yun完成签到 ,获得积分10
7秒前
岁岁发布了新的文献求助10
7秒前
7秒前
顾矜应助street采纳,获得10
8秒前
善学以致用应助探寻采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
啦啦完成签到,获得积分10
8秒前
kkuang完成签到 ,获得积分20
8秒前
rayawe完成签到 ,获得积分10
8秒前
浮游应助轻松水壶采纳,获得40
8秒前
可爱的函函应助辛勤笑晴采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873