重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

CrowdFA: A Privacy-Preserving Mobile Crowdsensing Paradigm via Federated Analytics

计算机科学 激励 数据聚合器 信息隐私 计算机安全 投标 密码学 拥挤感测 信息敏感性 分析 数据科学 无线传感器网络 计算机网络 业务 营销 经济 微观经济学
作者
Bowen Zhao,Xiaoguo Li,Ximeng Liu,Qingqi Pei,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5416-5430 被引量:1
标识
DOI:10.1109/tifs.2023.3308714
摘要

Mobile crowdsensing (MCS) systems typically struggle to address the challenge of data aggregation, incentive design, and privacy protection, simultaneously. However, existing solutions usually focus on one or, at most, two of these issues. To this end, this paper presents CROWDFA, a novel paradigm for privacy-preserving MCS through federated analytics (FA), which aims to achieve a well-rounded solution encompassing data aggregation, incentive design, and privacy protection. Specifically, inspired by FA, CRWODFA initiates an MCS computing paradigm that enables data aggregation and incentive design. Participants can perform aggregation operations on their local data, facilitated by CROWDFA, which supports various common data aggregation operations and bidding incentives. To address privacy concerns, CROWDFA relies solely on an efficient cryptographic primitive known as additive secret sharing to simultaneously achieve privacy-preserving data aggregation and privacy-preserving incentive. To instantiate CROWDFA, this paper presents a privacy-preserving data aggregation scheme (PRADA) based on CROWDFA, capable of supporting a range of data aggregation operations. Additionally, a CROWDFA-based privacy-preserving incentive mechanism (PRAED) is designed to ensure truthful and fair incentives for each participant, while maximizing their individual rewards. Theoretical analysis and experimental evaluations demonstrate that CROWDFA protects participants' data and bid privacy while effectively aggregating sensing data. Notably, CROWDFA outperforms state-of-the-art approaches by achieving up to 22 times faster computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁尒完成签到,获得积分10
1秒前
1秒前
1秒前
ylll完成签到,获得积分10
1秒前
幽默问凝完成签到,获得积分10
2秒前
grace发布了新的文献求助10
3秒前
滾滾完成签到,获得积分10
3秒前
3秒前
黄柠檬发布了新的文献求助10
3秒前
酷波er应助潇潇木子采纳,获得10
3秒前
HAHAHA发布了新的文献求助10
3秒前
祯元小猫发布了新的文献求助10
3秒前
传奇3应助煜琪采纳,获得10
3秒前
3秒前
4秒前
4秒前
愉快的枕头完成签到,获得积分10
4秒前
飞得更高发布了新的文献求助10
5秒前
6秒前
6秒前
晓霞完成签到,获得积分10
6秒前
glacial发布了新的文献求助10
7秒前
Ruby发布了新的文献求助10
8秒前
万能图书馆应助幽默问凝采纳,获得10
8秒前
顺心冰巧完成签到,获得积分10
8秒前
8秒前
感谢mildjorker转发科研通微信,获得积分50
9秒前
thomas发布了新的文献求助10
9秒前
浮游应助黄柠檬采纳,获得10
9秒前
9秒前
9秒前
小二郎应助一口啵啵采纳,获得10
10秒前
平常的毛衣完成签到,获得积分10
10秒前
12秒前
浆水鱼鱼发布了新的文献求助10
12秒前
12秒前
燕子完成签到,获得积分10
13秒前
所所应助快乐篮球采纳,获得10
13秒前
科研通AI6应助开朗磬采纳,获得10
13秒前
wnr发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673