CrowdFA: A Privacy-Preserving Mobile Crowdsensing Paradigm via Federated Analytics

计算机科学 激励 数据聚合器 信息隐私 计算机安全 投标 密码学 拥挤感测 信息敏感性 分析 数据科学 无线传感器网络 计算机网络 业务 营销 经济 微观经济学
作者
Bowen Zhao,Xiaoguo Li,Ximeng Liu,Qingqi Pei,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5416-5430 被引量:1
标识
DOI:10.1109/tifs.2023.3308714
摘要

Mobile crowdsensing (MCS) systems typically struggle to address the challenge of data aggregation, incentive design, and privacy protection, simultaneously. However, existing solutions usually focus on one or, at most, two of these issues. To this end, this paper presents CROWDFA, a novel paradigm for privacy-preserving MCS through federated analytics (FA), which aims to achieve a well-rounded solution encompassing data aggregation, incentive design, and privacy protection. Specifically, inspired by FA, CRWODFA initiates an MCS computing paradigm that enables data aggregation and incentive design. Participants can perform aggregation operations on their local data, facilitated by CROWDFA, which supports various common data aggregation operations and bidding incentives. To address privacy concerns, CROWDFA relies solely on an efficient cryptographic primitive known as additive secret sharing to simultaneously achieve privacy-preserving data aggregation and privacy-preserving incentive. To instantiate CROWDFA, this paper presents a privacy-preserving data aggregation scheme (PRADA) based on CROWDFA, capable of supporting a range of data aggregation operations. Additionally, a CROWDFA-based privacy-preserving incentive mechanism (PRAED) is designed to ensure truthful and fair incentives for each participant, while maximizing their individual rewards. Theoretical analysis and experimental evaluations demonstrate that CROWDFA protects participants' data and bid privacy while effectively aggregating sensing data. Notably, CROWDFA outperforms state-of-the-art approaches by achieving up to 22 times faster computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ASZXDW完成签到,获得积分10
刚刚
飞翔的小舟完成签到,获得积分20
刚刚
csa1007完成签到,获得积分10
刚刚
纷纷故事完成签到,获得积分10
1秒前
1秒前
哲999发布了新的文献求助10
1秒前
麦苳完成签到,获得积分10
1秒前
2秒前
汉堡包应助JIE采纳,获得10
2秒前
伏地魔完成签到,获得积分10
2秒前
3秒前
yyf完成签到,获得积分10
3秒前
XWT完成签到,获得积分10
3秒前
虚安完成签到 ,获得积分10
3秒前
xqy完成签到 ,获得积分10
3秒前
啵乐乐发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
momo完成签到,获得积分10
5秒前
慕青应助饕餮1235采纳,获得10
5秒前
小蘑菇应助CC采纳,获得10
6秒前
白白完成签到,获得积分10
6秒前
6秒前
6秒前
苏苏完成签到,获得积分10
7秒前
7秒前
wu完成签到,获得积分10
7秒前
7秒前
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
李健的小迷弟应助111采纳,获得10
9秒前
Accept应助wintercyan采纳,获得20
9秒前
哲999完成签到,获得积分10
9秒前
Mian完成签到,获得积分10
9秒前
10秒前
10秒前
于嗣濠完成签到 ,获得积分10
10秒前
36456657应助CC采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740