MWDINet: A multilevel wavelet decomposition interaction network for stock price prediction

计算机科学 小波 离散小波变换 深度学习 人工神经网络 块(置换群论) 数据挖掘 自相关 时域 小波包分解 人工智能 算法 小波变换 机器学习 数学 统计 计算机视觉 几何学
作者
Danning Wen,Tianlong Zhao,Li‐Zhi Fang,Caiming Zhang,Xuemei Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 122091-122091
标识
DOI:10.1016/j.eswa.2023.122091
摘要

Stock price prediction is a classical interdisciplinary issue drawn from finance, computer science, econometrics, and mathematics. Most stock price data are nonlinear, nonstationary, and highly complex, making stock price prediction challenging. Recently, deep neural networks (DNNs) have demonstrated powerful learning capabilities and have yielded notable results in stock price prediction tasks. Most existing deep learning solutions, however, only consider time-domain information or lack effective modeling of frequency-domain information, thus failing to effectively utilize both time-domain and frequency-domain information of the data. Meanwhile, existing methods ignore autocorrelated errors in the stock price forecasting task due to missing valid information data, i.e., they do not consider the correlation between the error at the current time step and the error at the previous time step, which undermines the standard maximum likelihood estimation (MLE) assumption, thereby weakening the model’s performance. We propose a multilevel wavelet decomposition interaction network (MWDINet), an end-to-end framework for stock price prediction. MWDINet employs the multiscale wavelet decomposition interaction module (MWDI-Block) and the Hull Moving Average module (HMA-Block) to extract the data’s frequency-domain and time-domain information, respectively. In MWDI-Block, the traditional signal processing method of Maximum Overlapping Discrete Wavelet Transform (MODWT) is seamlessly embedded into a deep learning framework (named DMODWT). The DMODWT algorithm not only automatically extracts the frequency-domain information from the data, but also fine-tunes the wavelet filters. With HMA-Block, we improve the Hull Moving Average (HMA), commonly used in the industry, into a deep learning module, which learns how changes in different markets over time. Inspired by the research on correcting autocorrelated errors in linear models in econometrics, we further design a deep difference module (DIF-Block) to correct autocorrelated errors and thus improve the prediction performance of the model. Moreover, all components are integrated seamlessly in a unified end-to-end framework. Extensive experiments on real-world datasets demonstrate that MWDINet outperforms the state-of-the-art models and has remarkable potential in stock price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助背后的秋柳采纳,获得10
1秒前
kbg990818完成签到 ,获得积分10
1秒前
高贵的耳机完成签到,获得积分10
2秒前
闪闪的小笼包完成签到,获得积分10
2秒前
帝释天I发布了新的文献求助20
2秒前
2秒前
3秒前
小二郎应助QI采纳,获得10
4秒前
布鸣鸟发布了新的文献求助10
4秒前
YY发布了新的文献求助10
4秒前
菜菜来了发布了新的文献求助10
4秒前
乐观鑫发布了新的文献求助10
4秒前
发的不太好完成签到,获得积分10
5秒前
青苔发布了新的文献求助10
5秒前
情怀应助WH采纳,获得10
5秒前
5秒前
可爱的函函应助杏梨采纳,获得10
6秒前
6秒前
老豆完成签到,获得积分10
6秒前
牛牛123完成签到 ,获得积分10
6秒前
滴滴滴发布了新的文献求助10
6秒前
王旭东完成签到 ,获得积分10
6秒前
liian7应助zz采纳,获得10
6秒前
汉堡包应助失眠的耳机采纳,获得10
6秒前
6秒前
胡图图完成签到,获得积分10
7秒前
寻水的鱼发布了新的文献求助10
7秒前
天天快乐应助strug783采纳,获得10
8秒前
领导范儿应助BU会采纳,获得10
8秒前
薰硝壤应助Frank采纳,获得20
9秒前
刘斌发布了新的文献求助10
9秒前
profit关注了科研通微信公众号
10秒前
小马甲应助dududu采纳,获得10
10秒前
努力退休小博士完成签到,获得积分20
10秒前
11秒前
粽子完成签到,获得积分10
13秒前
深情安青应助小小怪将军采纳,获得10
13秒前
EricYang发布了新的文献求助10
14秒前
慕青应助guo采纳,获得10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788