MWDINet: A multilevel wavelet decomposition interaction network for stock price prediction

计算机科学 小波 离散小波变换 深度学习 人工神经网络 块(置换群论) 数据挖掘 自相关 时域 小波包分解 人工智能 算法 小波变换 机器学习 数学 统计 几何学 计算机视觉
作者
Dechun Wen,Tianlong Zhao,L. Z. Fang,Caiming Zhang,Xuemei Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122091-122091 被引量:6
标识
DOI:10.1016/j.eswa.2023.122091
摘要

Stock price prediction is a classical interdisciplinary issue drawn from finance, computer science, econometrics, and mathematics. Most stock price data are nonlinear, nonstationary, and highly complex, making stock price prediction challenging. Recently, deep neural networks (DNNs) have demonstrated powerful learning capabilities and have yielded notable results in stock price prediction tasks. Most existing deep learning solutions, however, only consider time-domain information or lack effective modeling of frequency-domain information, thus failing to effectively utilize both time-domain and frequency-domain information of the data. Meanwhile, existing methods ignore autocorrelated errors in the stock price forecasting task due to missing valid information data, i.e., they do not consider the correlation between the error at the current time step and the error at the previous time step, which undermines the standard maximum likelihood estimation (MLE) assumption, thereby weakening the model’s performance. We propose a multilevel wavelet decomposition interaction network (MWDINet), an end-to-end framework for stock price prediction. MWDINet employs the multiscale wavelet decomposition interaction module (MWDI-Block) and the Hull Moving Average module (HMA-Block) to extract the data’s frequency-domain and time-domain information, respectively. In MWDI-Block, the traditional signal processing method of Maximum Overlapping Discrete Wavelet Transform (MODWT) is seamlessly embedded into a deep learning framework (named DMODWT). The DMODWT algorithm not only automatically extracts the frequency-domain information from the data, but also fine-tunes the wavelet filters. With HMA-Block, we improve the Hull Moving Average (HMA), commonly used in the industry, into a deep learning module, which learns how changes in different markets over time. Inspired by the research on correcting autocorrelated errors in linear models in econometrics, we further design a deep difference module (DIF-Block) to correct autocorrelated errors and thus improve the prediction performance of the model. Moreover, all components are integrated seamlessly in a unified end-to-end framework. Extensive experiments on real-world datasets demonstrate that MWDINet outperforms the state-of-the-art models and has remarkable potential in stock price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的小鸟完成签到 ,获得积分10
刚刚
刚刚
1秒前
思源应助陈博文采纳,获得10
1秒前
伽拉发布了新的文献求助10
2秒前
学术蛔虫完成签到 ,获得积分10
2秒前
3秒前
林子完成签到,获得积分10
3秒前
澡雪发布了新的文献求助10
3秒前
3秒前
4秒前
123发布了新的文献求助10
4秒前
咪咪发布了新的文献求助10
4秒前
4秒前
5秒前
wtt发布了新的文献求助10
6秒前
6秒前
7秒前
小柒完成签到 ,获得积分10
8秒前
9秒前
chuyixiaohan发布了新的文献求助30
10秒前
林子发布了新的文献求助10
10秒前
10秒前
超级小子发布了新的文献求助10
10秒前
SciGPT应助咪咪采纳,获得10
12秒前
13秒前
12chow chow发布了新的文献求助10
14秒前
14秒前
gentleman完成签到,获得积分10
14秒前
14秒前
猪猪hero应助可靠早晨采纳,获得10
15秒前
15秒前
完美世界应助甜美的一笑采纳,获得10
15秒前
xsuvian完成签到,获得积分10
16秒前
16秒前
chuyixiaohan完成签到,获得积分20
17秒前
18秒前
晚来天欲雪完成签到,获得积分10
18秒前
超级小子完成签到,获得积分20
18秒前
代大光发布了新的文献求助50
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390