MWDINet: A multilevel wavelet decomposition interaction network for stock price prediction

计算机科学 小波 离散小波变换 深度学习 人工神经网络 块(置换群论) 数据挖掘 自相关 时域 小波包分解 人工智能 算法 小波变换 机器学习 数学 统计 几何学 计算机视觉
作者
Dechun Wen,Tianlong Zhao,L. Z. Fang,Caiming Zhang,Xuemei Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122091-122091 被引量:6
标识
DOI:10.1016/j.eswa.2023.122091
摘要

Stock price prediction is a classical interdisciplinary issue drawn from finance, computer science, econometrics, and mathematics. Most stock price data are nonlinear, nonstationary, and highly complex, making stock price prediction challenging. Recently, deep neural networks (DNNs) have demonstrated powerful learning capabilities and have yielded notable results in stock price prediction tasks. Most existing deep learning solutions, however, only consider time-domain information or lack effective modeling of frequency-domain information, thus failing to effectively utilize both time-domain and frequency-domain information of the data. Meanwhile, existing methods ignore autocorrelated errors in the stock price forecasting task due to missing valid information data, i.e., they do not consider the correlation between the error at the current time step and the error at the previous time step, which undermines the standard maximum likelihood estimation (MLE) assumption, thereby weakening the model’s performance. We propose a multilevel wavelet decomposition interaction network (MWDINet), an end-to-end framework for stock price prediction. MWDINet employs the multiscale wavelet decomposition interaction module (MWDI-Block) and the Hull Moving Average module (HMA-Block) to extract the data’s frequency-domain and time-domain information, respectively. In MWDI-Block, the traditional signal processing method of Maximum Overlapping Discrete Wavelet Transform (MODWT) is seamlessly embedded into a deep learning framework (named DMODWT). The DMODWT algorithm not only automatically extracts the frequency-domain information from the data, but also fine-tunes the wavelet filters. With HMA-Block, we improve the Hull Moving Average (HMA), commonly used in the industry, into a deep learning module, which learns how changes in different markets over time. Inspired by the research on correcting autocorrelated errors in linear models in econometrics, we further design a deep difference module (DIF-Block) to correct autocorrelated errors and thus improve the prediction performance of the model. Moreover, all components are integrated seamlessly in a unified end-to-end framework. Extensive experiments on real-world datasets demonstrate that MWDINet outperforms the state-of-the-art models and has remarkable potential in stock price prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DELI完成签到 ,获得积分10
1秒前
白智妍完成签到,获得积分10
1秒前
1秒前
2秒前
Snail发布了新的文献求助10
6秒前
俭朴的世界完成签到 ,获得积分10
6秒前
十七完成签到 ,获得积分10
7秒前
李梦媛完成签到 ,获得积分10
7秒前
小七完成签到,获得积分10
8秒前
leapper完成签到 ,获得积分10
8秒前
光亮的绮晴完成签到 ,获得积分10
8秒前
赘婿应助大橙子采纳,获得10
14秒前
sfsfes应助ABC采纳,获得10
14秒前
SciGPT应助强公子采纳,获得10
14秒前
RXY完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
明明完成签到,获得积分10
18秒前
求知的周完成签到,获得积分10
18秒前
19秒前
柒柒球完成签到,获得积分10
19秒前
赵田完成签到 ,获得积分10
20秒前
20秒前
长安完成签到,获得积分10
24秒前
大橙子发布了新的文献求助10
25秒前
在水一方应助Herisland采纳,获得10
27秒前
笨笨小刺猬完成签到,获得积分10
29秒前
29秒前
科研小达人完成签到,获得积分10
32秒前
追寻凌青完成签到,获得积分10
34秒前
渡劫完成签到,获得积分10
35秒前
丫丫完成签到 ,获得积分10
35秒前
lxy发布了新的文献求助10
36秒前
bono完成签到 ,获得积分10
39秒前
DentistRui完成签到,获得积分10
39秒前
41秒前
laber应助忧伤的步美采纳,获得50
44秒前
淡淡月饼发布了新的文献求助20
45秒前
茶茶应助虞无声采纳,获得50
45秒前
大橙子发布了新的文献求助10
47秒前
wangnn完成签到,获得积分10
48秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022