代谢组
生物降解
生物转化
基因组
化学
代谢途径
代谢组学
溴化物
蛋白质组
生物化学
环境化学
酶
有机化学
色谱法
基因
作者
Chen-Wei Zheng,Yihao Luo,YenJung Sean Lai,Zehra Esra Ilhan,Aura Ontiveros‐Valencia,Rosa Krajmalnik‐Brown,Yan Jin,Haiwei Gu,Xiangxing Long,Dandan Zhou,Bruce E. Rittmann
出处
期刊:Water Research
[Elsevier]
日期:2023-10-12
卷期号:246: 120738-120738
被引量:3
标识
DOI:10.1016/j.watres.2023.120738
摘要
Traditional research on biodegradation of emerging organic pollutants involves slow and labor-intensive experimentation. Currently, fast-developing metagenome, metatranscriptome, and metabolome technologies promise to expedite mechanistic research on biodegradation of emerging organic pollutants. Integrating the metagenome, metatranscriptome, and metabolome (i.e., tri-omics) makes it possible to link gene abundance and expression with the biotransformation of the contaminant and the formation of metabolites from this biotransformation. In this study, we used this tri-omics approach to study the biotransformation pathways for cetyltrimethylammonium bromide (CTAB) under aerobic conditions. The tri-omics analysis showed that CTAB undergoes three parallel first-step mono-/di-oxygenations (to the α, β, and ω-carbons); intermediate metabolites and expressed enzymes were identified for all three pathways, and the β-carbon mono-/di-oxygenation is a novel pathway; and the genes related to CTAB biodegradation were associated with Pseudomonas spp. Four metabolites - palmitic acid, trimethylamine N-oxide (TMAO), myristic acid, and betaine - were the key identified biodegradation intermediates of CTAB, and they were associated with first-step mono-/di-oxygenations at the α/β-C. This tri-omics approach with CTAB demonstrates its power for identifying promising paths for future research on the biodegradation of complex organics by microbial communities.
科研通智能强力驱动
Strongly Powered by AbleSci AI